High-Dimensional Regression for Data Integration
数据集成的高维回归
基本信息
- 批准号:10707448
- 负责人:
- 金额:$ 27.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAssessment toolBiologicalChromosome MappingColorectal CancerComplexDNADNA IntegrationDataData AnalyticsData CorrelationsData SetDiagnosticDiseaseDisease OutcomeElementsEnhancersEvaluationEventGene ExpressionGene Expression ProfilingGenesGenetic TranscriptionGenomicsGoalsJointsKnowledgeLinkMalignant NeoplasmsMalignant neoplasm of ovaryMalignant neoplasm of prostateMediatingMethodsModelingMolecularOutcomePathway interactionsPerformancePlayPopulationRegulatory ElementRisk FactorsRoleScanningStatistical MethodsTimeTranscriptional RegulationUntranslated RNAVariantWorkcomputerized toolsdata integrationdiagnostic signaturediagnostic toolepigenomicsfeature selectionflexibilitygenome wide association studyhigh dimensionalityimprovedinsightnovelpredictive modelingprognosticprognostic signatureprognostic tooltooltraittranscriptomics
项目摘要
Project 1: High-Dimensional Regression for Data Integration
Abstract
Associated with high-dimensional omic (e.g. genomic, transcriptomic, epigenomic) features there is a
rich set of functional and regulatory annotations, pathway information, and disease-specific knowledge
from previous studies that is routinely used to interpret analyses of omic data. In this project, we
propose to develop integrative regression methods capable of incorporating this array of external
information a priori, rather than post hoc, to improve prediction performance, selection of predictive
and associated features, and to gain insight into potential biological mechanisms in studies with highdimensional omic data. In our first Specific Aim we propose a general high-dimensional mixed
modelling framework for integrating meta-features (e.g. functional annotations, pathways) into omic
studies, with the flexibility to handle quantitative, categorical, and time-to-event outcomes, as well as
the ability to accommodate correlated data through the inclusion of random effects. Our proposed
approach brings together mixed modeling, high-dimensional regularized regression, and an empirical
Bayes strategy that makes the direct estimation of tuning penalty parameters from the data analytically
and computationally tractable. The proposed integrative models can be deployed in ‘predictive mode’
to develop diagnostic and prognostic signatures, or in ‘discovery mode’ to identify omic features
associated with disease outcomes. We also propose an accompanying set of tools for inference and
model interpretation. Our second Specific Aim focuses on integrative high-dimensional regression
models for transcription-wide association studies (TWAS). We propose to leverage recent advances
linking enhancers and other DNA regulatory elements and their proximal target genes to improve the
prediction of genetically regulated gene expression with the goal of boosting the power and localization
ability of TWAS. In our third Specific Aim, we focus on applications of the methods in Aims 1 and 2 to
several cancer datasets.
项目1:面向数据集成的高维回归
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Pablo Lewinger其他文献
Juan Pablo Lewinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Pablo Lewinger', 18)}}的其他基金
LA’s Biostatistics and Data Science Training Program (LA’s BeST)
洛杉矶生物统计学和数据科学培训计划 (LAâs BeST)
- 批准号:
10368449 - 财政年份:2022
- 资助金额:
$ 27.53万 - 项目类别:
LA’s Biostatistics and Data Science Training Program (LA’s BeST)
洛杉矶生物统计学和数据科学培训计划 (LAâs BeST)
- 批准号:
10590701 - 财政年份:2022
- 资助金额:
$ 27.53万 - 项目类别:
LA’s Biostatistics Education Summer Training Program (LA’s BEST @USC)
洛杉矶生物统计教育暑期培训计划(洛杉矶 BEST @USC)
- 批准号:
9894852 - 财政年份:2019
- 资助金额:
$ 27.53万 - 项目类别:
Integrated Analysis for Genetic Association and Prediction
遗传关联与预测的综合分析
- 批准号:
9768384 - 财政年份:
- 资助金额:
$ 27.53万 - 项目类别:
相似海外基金
The potential of using student-conducted ethnographic research as a formative assessment tool in CLIL and EMI courses
在 CLIL 和 EMI 课程中使用学生进行的民族志研究作为形成性评估工具的潜力
- 批准号:
24K04145 - 财政年份:2024
- 资助金额:
$ 27.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing a new risk and needs assessment tool for young people who have displayed harmful sexual behaviour
为表现出有害性行为的年轻人开发新的风险和需求评估工具
- 批准号:
2886506 - 财政年份:2023
- 资助金额:
$ 27.53万 - 项目类别:
Studentship
I-Corps: Remote monitoring and assessment tool for spinal care patients
I-Corps:脊柱护理患者的远程监测和评估工具
- 批准号:
2321802 - 财政年份:2023
- 资助金额:
$ 27.53万 - 项目类别:
Standard Grant
SBIR Phase I: PenEEG: An Objective Assessment Tool for Concussion and Recovery Management
SBIR 第一阶段:PenEEG:脑震荡和恢复管理的客观评估工具
- 批准号:
2304353 - 财政年份:2023
- 资助金额:
$ 27.53万 - 项目类别:
Standard Grant
Development of the Dementia-Friendly Environmental Assessment Tool for Japanese care and nursing homes
为日本护理院和疗养院开发痴呆症友好型环境评估工具
- 批准号:
22KJ0474 - 财政年份:2023
- 资助金额:
$ 27.53万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Implementation of an impact assessment tool to optimize responsible stewardship of genomic data in the cloud
实施影响评估工具以优化云中基因组数据的负责任管理
- 批准号:
10721762 - 财政年份:2023
- 资助金额:
$ 27.53万 - 项目类别:
I-Corps: Sensor-based frailty assessment tool using a smart watch
I-Corps:使用智能手表的基于传感器的虚弱评估工具
- 批准号:
2311611 - 财政年份:2023
- 资助金额:
$ 27.53万 - 项目类别:
Standard Grant
DEVELOPMENT OF DIABETES HEALTH LITERACY ASSESSMENT TOOL TO SUPPORT HEALTHCARE PROVIDERS DURING VIRTUAL VISIT
开发糖尿病健康素养评估工具,在虚拟访问期间为医疗保健提供者提供支持
- 批准号:
495439 - 财政年份:2023
- 资助金额:
$ 27.53万 - 项目类别:
Development of a diagnostic assessment tool and training app for dyscaliculia to apply in medical treatment and education.
开发计算障碍诊断评估工具和培训应用程序,以应用于医疗和教育。
- 批准号:
23K02570 - 财政年份:2023
- 资助金额:
$ 27.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Injury prevention for rugby-related concussion: development of a comprehensive tackle assessment tool
橄榄球相关脑震荡的伤害预防:开发综合铲球评估工具
- 批准号:
23K16737 - 财政年份:2023
- 资助金额:
$ 27.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




