Integrated Analysis for Genetic Association and Prediction
遗传关联与预测的综合分析
基本信息
- 批准号:9768384
- 负责人:
- 金额:$ 38.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsBiologicalCancer PrognosisClinicalClinical ResearchColorectal CancerComplexCopy Number PolymorphismDNA Sequence AlterationDataData AnalysesData SetDatabasesDevelopmentDimensionsDiseaseEtiologyGene ExpressionGenesGenomeGenomicsGenotypeGoalsGroupingHandHealthIndividualLightMalignant NeoplasmsMeasurementMeasuresMethodsMethylationMicroRNAsModelingMolecularMultiomic DataOncogenesOntologyOperative Surgical ProceduresOutcomePatientsPatternPredispositionProbabilityPropertyRecurrenceRegulationSeriesStatistical Data InterpretationStatistical MethodsStructureSupervisionTechnologyThe Cancer Genome AtlasUncertaintyVariantWorkanalytical toolanticancer researchbasecancer geneticscancer genomicscancer recurrencecohortcolon cancer patientsdesigndisease phenotypeepidemiology studyepigenomeflexibilitygenetic analysisgenetic associationgenome wide association studygenome-widegenomic datagenomic platformgenomic profileshigh dimensionalityimprovedinsightnovelnovel markeroncologyoutcome forecastpersonalized medicineplatform-independentpredictive modelingrisk variantstatisticstooltranslational studytreatment responsetumortumor progression
项目摘要
ABSTRACT
The overall goal of this project is to develop novel statistical methods for integrative analysis of genomic data in
cancer research. We propose to develop analytical tools that can integrate data from multiple genomic
platforms and incorporate external omic information from publically available databases. These tools will be
applicable to both etiological studies geared toward causal discovery and to clinical and translational studies
geared toward predictive modeling.
Advances in high-throughput molecular technologies have enabled large-scale omic projects (e.g. Encode, The
Cancer Genome Atlas, Epigenome Roadmap) to generate vast amounts of information on the structure,
function and regulation of the genome. In addition to this publically available data, individual studies are
increasingly generating multiplatform genomic profiles (e.g. genotypes, gene expression, methylation copy
number variation, miRNA) to elucidate the complex mechanisms of cancer development and progression, and
investigate determinants and predictors of health and clinical outcomes. Integration across these multiple
genomic “dimensions” and incorporation of the available external information can increase the ability to
discovery causal relationships (e.g. Cancer-SNP associations), enhance prediction and prognosis modeling
(e.g. cancer aggressiveness), and provide insights into biological mechanisms. We propose two analytic
approaches aimed at addressing the challenges to effective integration across multiplatform genomic data and
incorporation of external information from omic projects. The first approach (Aim 1) is a Bayesian regression
and feature selection method that can integrate prior omic information in a very flexible manner allowing the
data to `speak for itself' to determine which pieces of external information are relevant for the problem at hand.
The method works with individual-level data and also with meta-analytic summaries, making it well suited for
analyzing data from large multi-study consortia. The second approach (Aim 2) is a regularized regression and
feature selection method for integrating multiplatform genomic features measured on the same set of
individuals. The method is designed to scale to the very large numbers of features typical of genomewide
platforms, to account for the different properties of each genomic data type, and to incorporate relevant
external information to increase efficiency. Both approaches can be applied for causal discovery and for
developing predictive and prognostic models. We will apply our methods to search for novel risk variants in the
CORECT consortium of genome association studies, and to construct a prognostic model of CRC recurrence
based on genomewide expression methylation data in the ColoCare consortium cohort of CRC patients. This
work will provide new tools for analyzing high-dimensional multi-platform genomic that can take
advantage of available external information.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Pablo Lewinger其他文献
Juan Pablo Lewinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Pablo Lewinger', 18)}}的其他基金
LA’s Biostatistics and Data Science Training Program (LA’s BeST)
洛杉矶生物统计学和数据科学培训计划 (LAâs BeST)
- 批准号:
10368449 - 财政年份:2022
- 资助金额:
$ 38.98万 - 项目类别:
LA’s Biostatistics and Data Science Training Program (LA’s BeST)
洛杉矶生物统计学和数据科学培训计划 (LAâs BeST)
- 批准号:
10590701 - 财政年份:2022
- 资助金额:
$ 38.98万 - 项目类别:
LA’s Biostatistics Education Summer Training Program (LA’s BEST @USC)
洛杉矶生物统计教育暑期培训计划(洛杉矶 BEST @USC)
- 批准号:
9894852 - 财政年份:2019
- 资助金额:
$ 38.98万 - 项目类别:
相似海外基金
CAREER: Transferring biological networks emergent principles to drone swarm collaborative algorithms
职业:将生物网络新兴原理转移到无人机群协作算法
- 批准号:
2339373 - 财政年份:2024
- 资助金额:
$ 38.98万 - 项目类别:
Continuing Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 38.98万 - 项目类别:
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
- 批准号:
EP/Y037375/1 - 财政年份:2023
- 资助金额:
$ 38.98万 - 项目类别:
Research Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2021
- 资助金额:
$ 38.98万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2019
- 资助金额:
$ 38.98万 - 项目类别:
Discovery Grants Program - Individual
Building flexible biological particle detection algorithms for emerging real-time instrumentation
为新兴实时仪器构建灵活的生物颗粒检测算法
- 批准号:
2278799 - 财政年份:2019
- 资助金额:
$ 38.98万 - 项目类别:
Studentship
CAREER: Microscopy Image Analysis to Aid Biological Discovery: Optics, Algorithms, and Community
职业:显微镜图像分析有助于生物发现:光学、算法和社区
- 批准号:
2019967 - 财政年份:2019
- 资助金额:
$ 38.98万 - 项目类别:
Standard Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2018
- 资助金额:
$ 38.98万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2017
- 资助金额:
$ 38.98万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2016
- 资助金额:
$ 38.98万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




