Molecular and cellular imaging of bone biopsies using AI augmented deep UV Raman microscopy
使用 AI 增强深紫外拉曼显微镜对骨活检进行分子和细胞成像
基本信息
- 批准号:10413606
- 负责人:
- 金额:$ 21.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAnimal ModelBinding ProteinsBiologicalBiological AssayBiopsyBone TissueBone neoplasmsBreast Cancer cell lineCancer BiologyCancer DetectionCancer DiagnosticsChemicalsClinicalComputer softwareDataData AnalysesDetectionDevelopmentEarly DiagnosisEnsureFrequenciesGoalsImageImage AnalysisIndividualKnowledgeLabelLegal patentLesionLibrariesMachine LearningMalignant NeoplasmsMetastatic Neoplasm to the BoneMethodsMicroscopeMicroscopicMicroscopyMolecularMolecular StructureOpticsPathologyPathway interactionsPerformancePharmaceutical PreparationsPhaseProcessProtein ConformationRaman Spectrum AnalysisResearchResearch Project GrantsResearch ProposalsResolutionRisk AssessmentScreening for cancerSensitivity and SpecificitySignal TransductionSpecificitySpeedTechniquesTechnologyTimeTissue SampleTissuesVariantaccurate diagnosticsbasebonebone imagingcancer imagingcancer initiationcancer riskcellular imagingclinical diagnosticscommercializationcostdata acquisitiondeep field surveydeep learningdeep learning algorithmdetection sensitivitydiagnostic tooldrug discoveryfollow-upimaging modalityimaging platformimaging systemimprovedinstrumentmachine learning algorithmmolecular imagingnovelnovel diagnosticsnovel strategiesoptical imagingpractical applicationpre-clinicalpreventprognostic valueprogramsprotein structureprototyperesearch studyresponsescreeningsuccesstooltumortumor progressionvibration
项目摘要
An exploratory research project will develop deep-UV Raman microscopic hyperspectral imaging for molecular
and/or cellular analysis of biological tissues with a goal of the early detection, improved screening, and clinical
diagnostics of cancer. Raman microscopy is often used in cancer biology to identify occurring chemical changes;
however, the sensitivity and specificity of detection remain to be a challenge. This gap of fundamental knowledge
on how to improve the information context of such images will be addressed by utilizing deep UV excitation,
which, through resonance excitation of specific molecules will enhance specificity of molecular detection and
improve the sensitivity by enhancing the signal against the background. To further improve the image-based
analysis and screening, a novel hyperspectral image analysis platform will be developed. The proposed research
program fills the technology gaps by developing an instrument, capable of performing Raman imaging at least
100 times faster, acquire new information through assessing low-frequency Raman modes, while reducing the
cost and the footprint to accelerate the wide-spread availability of the instrument. The new imaging system
augmented with novel hyperspectral imaging algorithms to handle multidimensional imaging data will be applied
to advance a challenging biopsy of bone tumors, one of the most devastating consequences of many cancers
with the goal to achieve 95% specificity. In Aim 1, a novel, patent-pending, wide-field deep UV hyperspectral
Raman imaging platform will be optimized for cancer tissue samples. A working prototype will be built, and its
performance will be experimentally characterized. In Aim 2, a data analysis platform with machine and deep
learning algorithms for pathology of bone tissue will be developed. Advanced imaging algorithms that take into
account many small changes in addition to a traditional analysis of Raman spectra will be used. Machine learning
and deep learning techniques will be developed to automatically determine abnormalities beyond current yes/no
tumor paradigm. In Aim 3, the developed platform will be validated as a novel analysis strategy. Research will
focus on distinguishing tumors in the animal model of metastatic bone cancer and developing a set of optical
markers to enable rapid identification of tumors. The proposed strategy offers a novel enabling technology to
elucidate basic mechanisms underlying cancer initiation and progression and will facilitate early cancer detection,
screening, and/or cancer risk assessment, by differentiating, evaluating and/or observing cancer stages and
progression. The overall approach targets the wide spread of the technology, its relatively low-cost and seamless
transition to clinical setting. The R33 phase will improve the sensitivity of detection and identify the pathways
toward commercialization. The research study will also provide a roadmap to develop a new advanced approach
for studying a variety of bone-related tumors and identify novel preclinical and clinical assays.
一个探索性的研究项目将发展分子的深紫外拉曼显微高光谱成像
和/或生物组织的细胞分析,目的是早期发现、改进筛查和临床
癌症诊断学。拉曼显微镜经常用于癌症生物学,以识别正在发生的化学变化;
然而,检测的敏感性和特异性仍然是一个挑战。这种基础知识的鸿沟
关于如何通过利用深紫外光激发来改善这种图像的信息上下文,
通过对特定分子的共振激发,将提高分子检测的特异性和
通过在背景中增强信号来提高灵敏度。要进一步提高基于图像的
分析和筛选,将开发一种新型的高光谱图像分析平台。拟议的研究
该计划通过开发一种至少能够进行拉曼成像的仪器来填补技术空白
速度提高100倍,通过评估低频拉曼模式获取新信息,同时减少
成本和占地面积,以加快该仪器的广泛应用。新的成像系统
将应用新的高光谱成像算法来处理多维成像数据
推进骨肿瘤的活检具有挑战性,骨肿瘤是许多癌症最具破坏性的后果之一
目标是达到95%的特异性。在目标1中,一种正在申请专利的新型广域深紫外高光谱
拉曼成像平台将针对癌症组织样本进行优化。将建造一个工作原型,并将其
性能将进行实验表征。在Aim 2中,一个具有机器和深度的数据分析平台
将开发骨组织病理学的学习算法。先进的成像算法,将
考虑到许多小的变化,除了传统的拉曼光谱分析外,还将使用拉曼光谱。机器学习
将开发深度学习技术,以自动确定当前是/否之外的异常
肿瘤范例。在目标3中,开发的平台将被验证为一种新的分析策略。研究将会
重点研究骨转移癌动物模型中肿瘤的鉴别和一套光学检测方法
能够快速识别肿瘤的标记。建议的战略提供了一种新的使能技术
阐明癌症发生和发展的基本机制,有助于癌症的早期发现,
筛查和/或癌症风险评估,通过区分、评估和/或观察癌症分期和
进步。整体方法的目标是广泛传播这项技术,其相对低成本和无缝
过渡到临床环境。R33期将提高检测的灵敏度,并识别路径
走向商业化。研究性研究还将为开发新的先进方法提供路线图
用于研究各种与骨相关的肿瘤,并确定新的临床前和临床检测方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Y. Berezin其他文献
Investigating chemotherapy effects on peripheral nerve elasticity
研究化疗对周围神经弹性的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Vsevolod Cheburkanov;Junwei Du;Mikhail Y. Berezin;Vladislav V. Yakovlev - 通讯作者:
Vladislav V. Yakovlev
Mikhail Y. Berezin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Y. Berezin', 18)}}的其他基金
Molecular and cellular imaging of bone biopsies using AI augmented deep UV Raman microscopy
使用 AI 增强深紫外拉曼显微镜对骨活检进行分子和细胞成像
- 批准号:
10657760 - 财政年份:2022
- 资助金额:
$ 21.72万 - 项目类别:
AN IMAGING-BASED APPROACH TO UNDERSTAND AND PREDICT CHEMOTHERAPY INDUCED PERIPHERAL NEUROPATHY
基于成像的方法来理解和预测化疗引起的周围神经病变
- 批准号:
9751226 - 财政年份:2017
- 资助金额:
$ 21.72万 - 项目类别:
AN IMAGING-BASED APPROACH TO UNDERSTAND AND PREDICT CHEMOTHERAPY INDUCED PERIPHERAL NEUROPATHY
基于成像的方法来理解和预测化疗引起的周围神经病变
- 批准号:
10220889 - 财政年份:2017
- 资助金额:
$ 21.72万 - 项目类别:
AN IMAGING-BASED APPROACH TO UNDERSTAND AND PREDICT CHEMOTHERAPY INDUCED PERIPHERAL NEUROPATHY
基于成像的方法来理解和预测化疗引起的周围神经病变
- 批准号:
9981988 - 财政年份:2017
- 资助金额:
$ 21.72万 - 项目类别:
ASSESSMENT OF CHEMOTHERAPY-INDUCED PERIPHERAL NEUROPATHY WITH ACTIVABLE PROBES
使用可激活探针评估化疗引起的周围神经病变
- 批准号:
8958415 - 财政年份:2015
- 资助金额:
$ 21.72万 - 项目类别:
FLUORESCENCE SPECTROPHOTOMETER IN NIR RANGE FOR BIOLOGICAL AND MEDICAL APPLICATIO
用于生物和医学应用的近红外范围荧光分光光度计
- 批准号:
8052140 - 财政年份:2011
- 资助金额:
$ 21.72万 - 项目类别:
DEVELOPMENT OF OPTICAL NANOTHERMOMETERS FOR MEDICAL APPLICATIONS
医疗应用光学纳米温度计的开发
- 批准号:
7875648 - 财政年份:2010
- 资助金额:
$ 21.72万 - 项目类别:
DEVELOPMENT OF OPTICAL NANOTHERMOMETERS FOR MEDICAL APPLICATIONS
医疗应用光学纳米温度计的开发
- 批准号:
8054330 - 财政年份:2010
- 资助金额:
$ 21.72万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Continuing Grant