Molecular and cellular imaging of bone biopsies using AI augmented deep UV Raman microscopy
使用 AI 增强深紫外拉曼显微镜对骨活检进行分子和细胞成像
基本信息
- 批准号:10657760
- 负责人:
- 金额:$ 19.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAlgorithmsAnimal ModelBinding ProteinsBiologicalBiological AssayBiopsyBone TissueBone neoplasmsBreast Cancer cell lineCancer BiologyCancer DetectionCancer DiagnosticsChemicalsClinicalComputer softwareDataData AnalysesDetectionDevelopmentDimensionsEarly DiagnosisElectronicsEnsureFrequenciesGoalsImageImage AnalysisIndividualKnowledgeLabelLegal patentLesionLibrariesMachine LearningMalignant NeoplasmsMetastatic Neoplasm to the BoneMethodsMicroscopeMicroscopicMicroscopyMolecularMolecular StructureOpticsPathologyPathway interactionsPerformancePharmaceutical PreparationsPhaseProcessProtein ConformationRaman Spectrum AnalysisResearchResearch Project GrantsResearch ProposalsResolutionRisk AssessmentScreening for cancerSensitivity and SpecificitySignal TransductionSpecificitySpeedTechniquesTechnologyTimeTissue SampleTissuesVariantaccurate diagnosticsbonebone imagingcancer imagingcancer initiationcancer riskcellular imagingclinical diagnosticscommercializationcostdata acquisitiondeep field surveydeep learningdeep learning algorithmdetection sensitivitydiagnostic tooldrug discoveryfollow-upimaging modalityimaging platformimaging systemimprovedinstrumentmachine learning algorithmmolecular imagingnovelnovel diagnosticsnovel strategiesoptical imagingpractical applicationpre-clinicalpreventprognostic valueprogramsprotein structureprototyperesearch studyresponsescreeningspectroscopic imagingsuccesstooltumortumor progression
项目摘要
An exploratory research project will develop deep-UV Raman microscopic hyperspectral imaging for molecular
and/or cellular analysis of biological tissues with a goal of the early detection, improved screening, and clinical
diagnostics of cancer. Raman microscopy is often used in cancer biology to identify occurring chemical changes;
however, the sensitivity and specificity of detection remain to be a challenge. This gap of fundamental knowledge
on how to improve the information context of such images will be addressed by utilizing deep UV excitation,
which, through resonance excitation of specific molecules will enhance specificity of molecular detection and
improve the sensitivity by enhancing the signal against the background. To further improve the image-based
analysis and screening, a novel hyperspectral image analysis platform will be developed. The proposed research
program fills the technology gaps by developing an instrument, capable of performing Raman imaging at least
100 times faster, acquire new information through assessing low-frequency Raman modes, while reducing the
cost and the footprint to accelerate the wide-spread availability of the instrument. The new imaging system
augmented with novel hyperspectral imaging algorithms to handle multidimensional imaging data will be applied
to advance a challenging biopsy of bone tumors, one of the most devastating consequences of many cancers
with the goal to achieve 95% specificity. In Aim 1, a novel, patent-pending, wide-field deep UV hyperspectral
Raman imaging platform will be optimized for cancer tissue samples. A working prototype will be built, and its
performance will be experimentally characterized. In Aim 2, a data analysis platform with machine and deep
learning algorithms for pathology of bone tissue will be developed. Advanced imaging algorithms that take into
account many small changes in addition to a traditional analysis of Raman spectra will be used. Machine learning
and deep learning techniques will be developed to automatically determine abnormalities beyond current yes/no
tumor paradigm. In Aim 3, the developed platform will be validated as a novel analysis strategy. Research will
focus on distinguishing tumors in the animal model of metastatic bone cancer and developing a set of optical
markers to enable rapid identification of tumors. The proposed strategy offers a novel enabling technology to
elucidate basic mechanisms underlying cancer initiation and progression and will facilitate early cancer detection,
screening, and/or cancer risk assessment, by differentiating, evaluating and/or observing cancer stages and
progression. The overall approach targets the wide spread of the technology, its relatively low-cost and seamless
transition to clinical setting. The R33 phase will improve the sensitivity of detection and identify the pathways
toward commercialization. The research study will also provide a roadmap to develop a new advanced approach
for studying a variety of bone-related tumors and identify novel preclinical and clinical assays.
一个探索性的研究项目将开发深紫外拉曼显微高光谱成像的分子
和/或生物组织的细胞分析,目的是早期检测、改进筛选和临床诊断。
癌症的诊断拉曼显微镜常用于癌症生物学,以识别发生的化学变化;
然而,检测的灵敏度和特异性仍然是一个挑战。这种基础知识的差距
关于如何改善这种图像的信息背景将通过利用深UV激发来解决,
其通过特定分子的共振激发将增强分子检测的特异性,
通过增强背景信号来提高灵敏度。为了进一步改善基于图像的
通过分析和筛选,将开发一个新的高光谱图像分析平台。拟议研究
该计划通过开发一种仪器填补了技术空白,该仪器至少能够进行拉曼成像
速度提高100倍,通过评估低频拉曼模式获取新信息,同时减少
成本和占地面积,以加快仪器的广泛可用性。新的成像系统
将应用新的高光谱成像算法来处理多维成像数据
骨肿瘤是许多癌症最具破坏性的后果之一,
目标是达到95%的特异性。在目标1中,一种新型的、正在申请专利的、宽视场深紫外高光谱
拉曼成像平台将针对癌症组织样本进行优化。将建立一个工作原型,其
性能将通过实验表征。在Aim 2中,使用机器和深度的数据分析平台
将开发用于骨组织病理学的学习算法。先进的成像算法,
考虑到除了传统的拉曼光谱分析之外,还将使用许多小的变化。机器学习
深度学习技术将被开发,以自动确定当前是/否之外的异常情况。
肿瘤范例在目标3中,开发的平台将被验证为一种新的分析策略。研究将
重点是在转移性骨癌动物模型中区分肿瘤,并开发一套光学
标记物,以便能够快速识别肿瘤。拟议的战略提供了一种新的使能技术,
阐明癌症发生和发展的基本机制,并将促进早期癌症检测,
通过区分、评估和/或观察癌症阶段进行筛查和/或癌症风险评估,以及
进展总体方法的目标是广泛传播该技术,其相对低成本和无缝
过渡到临床环境。R33阶段将提高检测的灵敏度,并确定途径
走向商业化。该研究还将为开发新的先进方法提供路线图
用于研究各种骨相关肿瘤,并确定新的临床前和临床试验。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Y. Berezin其他文献
Investigating chemotherapy effects on peripheral nerve elasticity
研究化疗对周围神经弹性的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Vsevolod Cheburkanov;Junwei Du;Mikhail Y. Berezin;Vladislav V. Yakovlev - 通讯作者:
Vladislav V. Yakovlev
Mikhail Y. Berezin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Y. Berezin', 18)}}的其他基金
Molecular and cellular imaging of bone biopsies using AI augmented deep UV Raman microscopy
使用 AI 增强深紫外拉曼显微镜对骨活检进行分子和细胞成像
- 批准号:
10413606 - 财政年份:2022
- 资助金额:
$ 19.92万 - 项目类别:
AN IMAGING-BASED APPROACH TO UNDERSTAND AND PREDICT CHEMOTHERAPY INDUCED PERIPHERAL NEUROPATHY
基于成像的方法来理解和预测化疗引起的周围神经病变
- 批准号:
9751226 - 财政年份:2017
- 资助金额:
$ 19.92万 - 项目类别:
AN IMAGING-BASED APPROACH TO UNDERSTAND AND PREDICT CHEMOTHERAPY INDUCED PERIPHERAL NEUROPATHY
基于成像的方法来理解和预测化疗引起的周围神经病变
- 批准号:
10220889 - 财政年份:2017
- 资助金额:
$ 19.92万 - 项目类别:
AN IMAGING-BASED APPROACH TO UNDERSTAND AND PREDICT CHEMOTHERAPY INDUCED PERIPHERAL NEUROPATHY
基于成像的方法来理解和预测化疗引起的周围神经病变
- 批准号:
9981988 - 财政年份:2017
- 资助金额:
$ 19.92万 - 项目类别:
ASSESSMENT OF CHEMOTHERAPY-INDUCED PERIPHERAL NEUROPATHY WITH ACTIVABLE PROBES
使用可激活探针评估化疗引起的周围神经病变
- 批准号:
8958415 - 财政年份:2015
- 资助金额:
$ 19.92万 - 项目类别:
FLUORESCENCE SPECTROPHOTOMETER IN NIR RANGE FOR BIOLOGICAL AND MEDICAL APPLICATIO
用于生物和医学应用的近红外范围荧光分光光度计
- 批准号:
8052140 - 财政年份:2011
- 资助金额:
$ 19.92万 - 项目类别:
DEVELOPMENT OF OPTICAL NANOTHERMOMETERS FOR MEDICAL APPLICATIONS
医疗应用光学纳米温度计的开发
- 批准号:
7875648 - 财政年份:2010
- 资助金额:
$ 19.92万 - 项目类别:
DEVELOPMENT OF OPTICAL NANOTHERMOMETERS FOR MEDICAL APPLICATIONS
医疗应用光学纳米温度计的开发
- 批准号:
8054330 - 财政年份:2010
- 资助金额:
$ 19.92万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 19.92万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 19.92万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 19.92万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 19.92万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 19.92万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 19.92万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 19.92万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 19.92万 - 项目类别:
Research Grant