Mechanical forces in nanoscale biology: From hemostasis to single-molecule centrifugation
纳米生物学中的机械力:从止血到单分子离心
基本信息
- 批准号:10413060
- 负责人:
- 金额:$ 48.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdhesionsAdhesivesAreaBehaviorBiochemicalBiological AssayBiologyBlood Coagulation DisordersCellsCentrifugationCommunicable DiseasesComplexDNADevelopmentDevicesDiseaseGenomicsGrowthHair CellsHearingHemostatic functionImmune responseImmunologyLeukocytesLifeLinkMalignant NeoplasmsMeasurementMeasuresMechanicsMethodsMicroscopeMolecularMovementOrganismPathway interactionsPlayProblem SolvingProcessPropertyProtein ConformationProteinsRegulationResearch PersonnelRoboticsRoleShapesSpectrum AnalysisStructureTechnologyTissuesbasecentrifuge force microscopedeafnessdriving forcehigh throughput screeninginsightinstrumentinstrumentationinterestmechanical forcemechanotransductionnanoscalenanoswitchprogramsresponsescreeningsingle moleculetoolvon Willebrand Factor
项目摘要
Abstract
Mechanical forces play key roles throughout biology, from governing the adhesion of leukocytes in the immune
response, to determining cell fate and directing tissue formation. This field of mechanobiology is providing vital
insights into conditions such as bleeding disorders, cancer, and infectious diseases, where it is becoming clear
that conventional biochemical and genomic characterizations are not sufficient to understand the rich behavior
of living systems or how they fail. Rather, we must uncover how force changes the structure and function of
molecules, triggering mechanotransduction pathways to modify cell responses. Technological developments
that enable precise manipulation of single molecules and cells have been a driving force in the development of
the field, but growth has been impeded by both limited access to such technologies and by constraints in their
capabilities, which has restricted the types of scientific questions that can be addressed.
To overcome these challenges, we will develop approaches in mechanobiology that will (i) open up new areas
of study through the introduction of new capabilities, and (ii) democratize single-molecule and nanoscale
methods so that all biomedical researchers can make discoveries using these powerful tools. We will continue
to develop instruments such as the Centrifuge Force Microscope, a miniature microscope that fits into a
benchtop centrifuge to enable even non-specialists to perform high-throughput single-molecule force
measurements, and nanoscale devices such as programmable DNA nanoswitches. We will develop DNA
nanoswitch calipers, a tool capable of measuring distances on single-molecules with angstrom-level precision
to enable single-molecule protein identification and shape determination. We will also develop Functional
Interaction-based Nanoswitch Discovery (FIND), a high-throughput screening assay based not on traditional
robotics, but on molecular devices that bring together molecular components to analyze and screen for
interactions of interest. FIND will enable screening of complex modes of action to find compounds that activate
a specific downstream pathway or allosterically stabilize a particular protein conformation.
We will apply our nanoscale approaches to answer key open questions in mechanobiology. For example, to
uncover the mechanical regulation of hemostasis we will use single-molecule methods to study the force-
regulated enzymatic cleavage of von Willebrand factor, and the flow-induced elongation and activation of its
adhesive function. We will also investigate the molecular basis of hearing and deafness by using single-
molecule force spectroscopy to probe the properties of the hair cell tip link, and combine this approach with
single-channel conductance measurements to simultaneously measure the force required to open
mechanotransduction channels and the molecular movements that underlie channel gating. Overall, these
efforts should firmly establish force as a key parameter for understanding the basic processes of life, and
provide a new handle for both understanding—and treating—disease.
抽象的
机械力在整个生物学中发挥着关键作用,从控制免疫系统中白细胞的粘附到
反应,决定细胞命运并指导组织形成。机械生物学这一领域提供了至关重要的
对出血性疾病、癌症和传染病等疾病的深入了解,这些情况正在变得越来越清楚
传统的生化和基因组特征不足以理解丰富的行为
生命系统或它们如何失败。相反,我们必须揭示力如何改变物体的结构和功能
分子,触发机械转导途径来改变细胞反应。技术发展
能够精确操纵单分子和细胞一直是发展的驱动力
该领域的发展受到阻碍,因为获得此类技术的机会有限,而且这些技术的限制
能力,这限制了可以解决的科学问题的类型。
为了克服这些挑战,我们将开发机械生物学方法,这些方法将(i)开辟新领域
通过引入新功能来进行研究,以及(ii)使单分子和纳米级大众化
方法,以便所有生物医学研究人员都可以使用这些强大的工具做出发现。我们将继续
开发诸如离心力显微镜之类的仪器,这是一种安装在
台式离心机即使非专业人员也能进行高通量单分子力分析
测量和纳米级设备,例如可编程 DNA 纳米开关。我们将开发DNA
纳米开关卡尺,一种能够以埃级精度测量单分子距离的工具
实现单分子蛋白质识别和形状确定。我们还将开发功能性
基于交互的纳米开关发现(FIND),一种不基于传统方法的高通量筛选方法
机器人技术,但在分子设备上将分子成分聚集在一起进行分析和筛选
兴趣互动。 FIND 将能够筛选复杂的作用模式,以找到激活的化合物
特定的下游途径或变构稳定特定的蛋白质构象。
我们将应用纳米级方法来回答机械生物学中的关键开放问题。例如,要
为了揭示止血的机械调节,我们将使用单分子方法来研究力-
冯维勒布兰德因子的调节酶促裂解,及其流诱导的延伸和激活
粘合功能。我们还将通过使用单项研究来研究听力和耳聋的分子基础。
分子力光谱法探测毛细胞尖端连接的特性,并将这种方法与
单通道电导测量可同时测量打开所需的力
机械转导通道和通道门控基础的分子运动。总体而言,这些
努力应该牢固地将力量确立为理解生命基本过程的关键参数,并且
为理解和治疗疾病提供了新的思路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wesley Philip Wong其他文献
Wesley Philip Wong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wesley Philip Wong', 18)}}的其他基金
Mechancial forces in nanoscale biology: from hemostasis to single-molecule centrifugation
纳米生物学中的机械力:从止血到单分子离心
- 批准号:
9337477 - 财政年份:2016
- 资助金额:
$ 48.68万 - 项目类别:
Mechanical forces in nanoscale biology: From hemostasis to single-molecule centrifugation
纳米生物学中的机械力:从止血到单分子离心
- 批准号:
10631055 - 财政年份:2016
- 资助金额:
$ 48.68万 - 项目类别:
Mechancial forces in nanoscale biology: from hemostasis to single-molecule centrifugation
纳米生物学中的机械力:从止血到单分子离心
- 批准号:
9141304 - 财政年份:2016
- 资助金额:
$ 48.68万 - 项目类别:
Bringing mechanobiology to the benchtop with single-molecule centrifugation
通过单分子离心将机械生物学带到实验室
- 批准号:
8901232 - 财政年份:2014
- 资助金额:
$ 48.68万 - 项目类别:
Bringing mechanobiology to the benchtop with single-molecule centrifugation
通过单分子离心将机械生物学带到实验室
- 批准号:
8755421 - 财政年份:2014
- 资助金额:
$ 48.68万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 48.68万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 48.68万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 48.68万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 48.68万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 48.68万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 48.68万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 48.68万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 48.68万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 48.68万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 48.68万 - 项目类别:














{{item.name}}会员




