Mechancial forces in nanoscale biology: from hemostasis to single-molecule centrifugation

纳米生物学中的机械力:从止血到单分子离心

基本信息

  • 批准号:
    9141304
  • 负责人:
  • 金额:
    $ 44.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Mechanical forces play key roles throughout biology, from governing the adhesion of leukocytes in the immune response, to determining cell fate and tissue development. This emergent field of "mechanobiology" is providing vital insights into diseases such as bleeding disorders, cancer, and infectious diseases, where it is becoming clear that conventional biochemical and genomic characterizations are not sufficient to understand the rich behavior of living systems or how they fail. Rather, we must uncover how force can change the structure and function of molecules, and trigger mechanotransduction pathways to modify cell responses. Technological developments that enable precise manipulation of single molecules and cells (e.g. optical tweezers and AFM) have been a driving force in the development of the field. However, growth of the field is impeded by limited access to such technologies as they can be expensive, technically challenging, and low- throughput. These challenges have also limited the types of scientific questions that can be addressed. To overcome these challenges, we will develop high-throughput and accessible new approaches in mechanobiology that will (i) open up new areas of study through the introduction of new capabilities, and (ii) democratize single-molecule force measurements so that all biomedical researchers can make discoveries using these powerful tools. For example, we will accelerate single-molecule measurements by building upon an instrument that almost all biomedical researchers already have: the benchtop centrifuge. By developing a miniature microscope that fits into a standard centrifuge bucket, we will create an accessible and inexpensive benchtop instrument that will bring high-throughput single-molecule manipulation to non-specialists, offering a 1000 fold efficiency boost and 10-100 fold cost improvement over many other methods. We will also develop self-assembled DNA nanoscale devices that facilitate single-molecule studies of population heterogeneity, and that enable instrument-free force spectroscopy. Significantly, these projects will open the fields of mechano- biology and single-molecule manipulation to new researchers and systems, accelerating the pace of discovery. Additionally, we will apply our single-molecule approaches to answer key open questions in mechanobiology regarding (i) the mechanical regulation of hemostasis, (ii) adhesion molecules in the immune response, and (iii) mechanotransduction and the molecular basis for hearing and deafness. For example, we will perform massively-parallel force measurements using single-molecule centrifugation to study force-regulated enzymatic cleavage of von Willebrand factor, and investigate mutations related to von Willebrand Disease, the most common inheritable bleeding disorder. We will also study cellular adhesion of leukocytes, and investigate the molecular basis of hearing and deafness. Overall, these efforts should firmly establish force as a key parameter for understanding the basic processes of life, and provide a new handle for both understanding— and treating—disease.
机械力在整个生物学中发挥着关键作用,从控制免疫系统中白细胞的粘附到 反应,决定细胞命运和组织发育。 “机械生物学”这个新兴领域是 提供对出血性疾病、癌症和传染病等疾病的重要见解 越来越清楚的是,传统的生化和基因组特征不足以理解 生命系统的丰富行为或它们如何失败。相反,我们必须揭示力量如何改变世界 分子的结构和功能,并触发机械转导途径来改变细胞反应。 能够精确操纵单分子和细胞的技术发展(例如光学 镊子和 AFM)一直是该领域发展的驱动力。然而,该领域的增长是 由于这些技术价格昂贵、技术上具有挑战性且成本低,因此获得这些技术的机会有限。 吞吐量。这些挑战也限制了可以解决的科学问题的类型。 为了克服这些挑战,我们将开发高通量且易于使用的新方法 机械生物学将(i)通过引入新的能力开辟新的研究领域,以及(ii) 使单分子力测量民主化,以便所有生物医学研究人员都能做出发现 使用这些强大的工具。例如,我们将通过构建加速单分子测量 几乎所有生物医学研究人员都已经拥有的仪器:台式离心机。通过开发一个 适合标准离心机桶的微型显微镜,我们将创造一种易于使用且廉价的显微镜 台式仪器将为非专业人士带来高通量单分子操作,提供 与许多其他方法相比,效率提高了 1000 倍,成本降低了 10-100 倍。我们还将开发 自组装 DNA 纳米级装置,有助于群体异质性的单分子研究,以及 实现无仪器力谱分析。值得注意的是,这些项目将打开机械领域 生物学和单分子操纵给新的研究人员和系统,加快了发现的步伐。 此外,我们将应用单分子方法来回答机械生物学中的关键开放问题 关于(i)止血的机械调节,(ii)免疫反应中的粘附分子,以及(iii) 机械传导以及听力和耳聋的分子基础。例如,我们将执行 使用单分子离心进行大规模并行力测量以研究力调节酶 切割冯·维勒布兰德因子,并研究与冯·维勒布兰德病相关的突变,这是最常见的疾病 常见的遗传性出血性疾病。我们还将研究白细胞的细胞粘附,并研究 听力和耳聋的分子基础。总体而言,这些努力应牢固确立武力作为关键 参数来理解生命的基本过程,并为理解提供一个新的手柄—— 以及治疗——疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wesley Philip Wong其他文献

Wesley Philip Wong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wesley Philip Wong', 18)}}的其他基金

Mechanical forces in nanoscale biology: From hemostasis to single-molecule centrifugation
纳米生物学中的机械力:从止血到单分子离心
  • 批准号:
    10413060
  • 财政年份:
    2016
  • 资助金额:
    $ 44.25万
  • 项目类别:
Mechancial forces in nanoscale biology: from hemostasis to single-molecule centrifugation
纳米生物学中的机械力:从止血到单分子离心
  • 批准号:
    9337477
  • 财政年份:
    2016
  • 资助金额:
    $ 44.25万
  • 项目类别:
Mechanical forces in nanoscale biology: From hemostasis to single-molecule centrifugation
纳米生物学中的机械力:从止血到单分子离心
  • 批准号:
    10631055
  • 财政年份:
    2016
  • 资助金额:
    $ 44.25万
  • 项目类别:
Bringing mechanobiology to the benchtop with single-molecule centrifugation
通过单分子离心将机械生物学带到实验室
  • 批准号:
    8901232
  • 财政年份:
    2014
  • 资助金额:
    $ 44.25万
  • 项目类别:
Bringing mechanobiology to the benchtop with single-molecule centrifugation
通过单分子离心将机械生物学带到实验室
  • 批准号:
    8755421
  • 财政年份:
    2014
  • 资助金额:
    $ 44.25万
  • 项目类别:

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
  • 批准号:
    BB/Y001427/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    $ 44.25万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 44.25万
  • 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
  • 批准号:
    10821599
  • 财政年份:
    2023
  • 资助金额:
    $ 44.25万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10841832
  • 财政年份:
    2023
  • 资助金额:
    $ 44.25万
  • 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
  • 批准号:
    10532480
  • 财政年份:
    2022
  • 资助金额:
    $ 44.25万
  • 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
  • 批准号:
    10741261
  • 财政年份:
    2022
  • 资助金额:
    $ 44.25万
  • 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
  • 批准号:
    10674894
  • 财政年份:
    2022
  • 资助金额:
    $ 44.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了