Precision magnetic hyperthermia by integrating magnetic particle imaging

通过集成磁粒子成像实现精确磁热疗

基本信息

  • 批准号:
    10415219
  • 负责人:
  • 金额:
    $ 61.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Precision magnetic hyperthermia by integrating magnetic particle imaging Magnetic activation of magnetic iron oxide nanoparticles (MIONPs) offers considerable potential for numerous biomedical applications. Approved clinical applications include contrast enhancement for magnetic resonance imaging (MRI) and magnetic fluid hyperthermia (MFH) for cancer treatment. MIONPs are T2 negative contrast agents which have been clinically available for MRI since the late 1980s where very low tissue concentrations (<100 g Fe/g tissue) are needed for imaging. MFH is a powerful nanotechnology-based treatment that enhances radiation therapy (RT). It comprises local heating of tissue by activating MIONPs with an external alternating magnetic field (AMF), enabling treatment anywhere in the body. Human clinical trials demonstrated benefits of MFH for prostate cancer; and, overall survival benefits with RT in recurrent glioblastoma (GBM) resulted in European approval in 2010. However, current MFH effectiveness is limited by the inability to visualize MIONP distribution during MFH, resulting in poor AMF control of MIONP heating, reduced therapeutic efficacy, and unwanted off-target toxicity. An integrated MIONP imaging-MFH technology that provides spatial control of the MFH treatment volume will substantially advance the clinical use of theranostic MIONPs. Magnetic particle imaging (MPI) is an emerging imaging technology that directly quantitates MIONP concentration in tissue with similar or greater sensitivity as MRI. The main magnet in an MPI scanner produces a strong magnetic field gradient containing a region where the magnetic field is approximately zero, i.e. the Field Free Region (FFR). MIONPs in the FFR are magnetically unsaturated and can produce a signal in a receiver coil, while MIONPs elsewhere are magnetically saturated and produce no signal. Images are produced by rastering the FFR across the sample. The FFR used for imaging can be used to localize MFH. By applying a magnetic field gradient and AMF, only MIONPs inside the FFR will heat while MIONPs outside the FFR are saturated and do not heat. MPI and MFH are compatible enabling mm-precision spatial control of MFH. Our objective is to develop an integrated MPI/MFH workflow that incorporates imaging-guided treatment planning with optimal theranostic MIONPs for preclinical biomedical research with small animal (mouse and rat) models. We aim to achieve our objectives by purchasing a HYPER AMF system that will be used with our recently acquired Momentum MPI scanner (funded by a S10 shared instrumentation grant). Our specific aims are: (Aim 1) Identify MIONPs having ideal physical and magnetic properties for MPI/MFH; (Aim 2) Develop MPI-guided MFH treatment using computational modeling and amplitude modulation; (Aim 3) Demonstrate increased therapeutic efficacy of theranostic MPI/MFH in vivo. While the primary objective of the proposed effort is technology development, successful completion of the aims will provide biomedical researchers the ability to realize theranostic applications with magnetic nanoparticles.
集成磁粉成像的精密磁热疗法 磁性氧化铁纳米颗粒(MIONPs)的磁活化为许多人提供了巨大的潜力 生物医学应用。批准的临床应用包括磁共振的对比增强 磁共振成像(MRI)和磁流体热疗(MFH)用于癌症治疗。MIONPs为T2负对比度 自20世纪80年代末以来临床上可用于核磁共振的药物,其组织浓度非常低 (&lt;100g Fe/g组织)进行成像。MFH是一种基于纳米技术的强大疗法,它可以增强 放射治疗(RT)。它包括通过用外部交替物激活MIONPs来局部加热组织 磁场(AMF),可以在身体的任何地方进行治疗。人体临床试验证明了 MFH治疗前列腺癌;放疗对复发的胶质母细胞瘤(GBM)患者的总体生存好处 2010年,欧洲批准了这一计划。然而,当前MFH的有效性受到无法可视化MIONP的限制 在MFH期间的分布,导致AMF对MIONP加热的不良控制,降低了治疗效果,以及 不想要的偏离目标的毒性。一种集成的MIONP成像-MFH技术,提供空间控制 MFH的治疗量将大大促进医用MIONPs的临床应用。磁粉 成像(MPI)是一种新兴的成像技术,它可以直接定量组织中的MIONP浓度 与核磁共振的敏感性相似或更高。MPI扫描仪中的主磁铁产生强磁场 包含磁场近似为零的区域的梯度,即无场区域(FFR)。 FFR中的MIONPs是磁性不饱和的,可以在接收器线圈中产生信号,而MIONPs 其他地方是磁饱和的,不会产生任何信号。图像是通过对FFR进行栅格扫描来生成的 样本。用于成像的FFR可用于MFH的定位。通过施加磁场梯度和 AMF,只有FFR内的MIONP会发热,而FFR外的MIONPs是饱和的,不会发热。MPI 和MFH兼容,可实现MFH的毫米精度空间控制。我们的目标是开发一种综合的 MPI/MFH工作流程,将影像引导的治疗计划与最佳的MIONPs治疗相结合 小动物(小鼠和大鼠)模型的临床前生物医学研究。我们的目标是通过以下方式实现目标 购买Hyper AMF系统,该系统将与我们最近收购的Momentum MPI扫描仪一起使用(资助 由S10共享仪器拨款)。我们的具体目标是:(目标1)确定具有理想体格的MIONPs 和MPI/MFH的磁性;(目标2)开发MPI引导的MFH治疗方法 建模和调幅;(目标3)显示治疗鼻窦炎的疗效增加 MPI/MFH体内移植。虽然拟议工作的主要目标是技术开发,但成功 这些目标的完成将为生物医学研究人员提供实现治疗鼻音应用的能力 磁性纳米颗粒。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeff W. Bulte其他文献

Jeff W. Bulte的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeff W. Bulte', 18)}}的其他基金

Precision magnetic hyperthermia by integrating magnetic particle imaging
通过集成磁粒子成像实现精确磁热疗
  • 批准号:
    10296182
  • 财政年份:
    2021
  • 资助金额:
    $ 61.54万
  • 项目类别:
Precision magnetic hyperthermia by integrating magnetic particle imaging
通过集成磁粒子成像实现精确磁热疗
  • 批准号:
    10667448
  • 财政年份:
    2021
  • 资助金额:
    $ 61.54万
  • 项目类别:
Intracellular Self-Assembly of Theranostic Nanoparticles for Enhanced Imaging and Tumor Therapy
用于增强成像和肿瘤治疗的治疗诊断纳米颗粒的细胞内自组装
  • 批准号:
    10207626
  • 财政年份:
    2020
  • 资助金额:
    $ 61.54万
  • 项目类别:
Intracellular Self-Assembly of Theranostic Nanoparticles for Enhanced Imaging and Tumor Therapy
用于增强成像和肿瘤治疗的治疗诊断纳米颗粒的细胞内自组装
  • 批准号:
    10400220
  • 财政年份:
    2020
  • 资助金额:
    $ 61.54万
  • 项目类别:
Intracellular Self-Assembly of Theranostic Nanoparticles for Enhanced Imaging and Tumor Therapy
用于增强成像和肿瘤治疗的治疗诊断纳米颗粒的细胞内自组装
  • 批准号:
    10063659
  • 财政年份:
    2020
  • 资助金额:
    $ 61.54万
  • 项目类别:
Non-Invasive Tracking of Genome-Corrected iPS cells in ALS
对 ALS 中基因组校正的 iPS 细胞进行无创追踪
  • 批准号:
    10472760
  • 财政年份:
    2019
  • 资助金额:
    $ 61.54万
  • 项目类别:
Non-Invasive Tracking of Genome-Corrected iPS cells in ALS
对 ALS 中基因组校正的 iPS 细胞进行无创追踪
  • 批准号:
    10447292
  • 财政年份:
    2019
  • 资助金额:
    $ 61.54万
  • 项目类别:
Non-Invasive Tracking of Genome-Corrected iPS cells in ALS
对 ALS 中基因组校正的 iPS 细胞进行无创追踪
  • 批准号:
    9810637
  • 财政年份:
    2019
  • 资助金额:
    $ 61.54万
  • 项目类别:
Non-Invasive Tracking of Genome-Corrected iPS cells in ALS
对 ALS 中基因组校正的 iPS 细胞进行无创追踪
  • 批准号:
    10006002
  • 财政年份:
    2019
  • 资助金额:
    $ 61.54万
  • 项目类别:
Label-Free Imaging of Composite Hyaluronic Acid Hydrogels in Regenerative Medicine
再生医学中复合透明质酸水凝胶的无标记成像
  • 批准号:
    9389085
  • 财政年份:
    2017
  • 资助金额:
    $ 61.54万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.54万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 61.54万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 61.54万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 61.54万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 61.54万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 61.54万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 61.54万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 61.54万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 61.54万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 61.54万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了