Non-Invasive Tracking of Genome-Corrected iPS cells in ALS
对 ALS 中基因组校正的 iPS 细胞进行无创追踪
基本信息
- 批准号:10472760
- 负责人:
- 金额:$ 48.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:ALS patientsAmyotrophic Lateral SclerosisAntigen TargetingBiodistributionCell ProliferationCell TherapyCell TransplantationCellsCerebrumClinicClinicalDNA Sequence AlterationDetectionDevelopmentDiseaseDisease ProgressionEvaluationEventFOLH1 geneFeasibility StudiesFutureGene MutationGenesGenetic DiseasesGenomeGlutamatergic AgentsHomingHumanImageImaging DeviceImaging TechniquesImmuneIn VitroInjectionsIntra-Arterial InjectionsKnockout MiceLabelLongevityMagnetic Resonance ImagingMagnetismModalityMolecularMotorMotor NeuronsMusMuscleMutateMutationNervous system structureNeuraxisNeurodegenerative DisordersOnset of illnessOrganismOutcomeParalysedPatientsPharmaceutical PreparationsPhasePoint MutationPositron-Emission TomographyPropertyProteinsProtocols documentationReportingResourcesRiluzoleRouteSafetySiteSpinal CordStem cell transplantSystemTechniquesTestingTherapeuticTimeTissuesTransgenic OrganismsUndifferentiatedUnited States Food and Drug Administrationamyotrophic lateral sclerosis therapybasecell replacement therapycellular transductionclinical applicationenzyme activityexperiencegene correctiongenetic approachgenome editingimage guidedimaging approachimaging modalityimprovedin vivoinduced pluripotent stem cellknock-downmortalitymotor impairmentmouse modelmutantnon-invasive imagingnovelparticlepersonalized medicinepre-clinicalpyrrolidin-3-yl-methanesulfonic acidreal-time imagesregenerative approachsafety studystem cell therapystem cellssuperoxide dismutase 1tumorzinc finger nuclease
项目摘要
The use of gene-edited stem cells and in particular patient-derived iPSCs for cell replacement therapy is an
appealing approach for genetic correction of a disease-associated gene mutation. If such therapies are
pursued in future patients, it would be highly desirable to have non-invasive cell tracking techniques available
that can report longitudinally on the distribution and survival of transplanted cells, in order to better understand
their fate in vivo and to optimize personalized therapies. We have chosen amyotrophic lateral sclerosis (ALS),
a devastating disease with near 100% mortality as an example of a target disease, in which loss of motor
neurons is a key event leading to muscle paralysis. For familial forms of ALS, mutations in the gene superoxide
dismutase 1 (SOD1) are known to be a causative factor for disease development. In this proposal, we aim to
apply two novel experimental imaging modalities (MPI and PSMA-targeted 18F-DCFPyL PET) in conjunction
with a clinically emerging technique (1H MRI) to answer several basic questions associated with the efficacy
and safety of genome-edited cell therapy. These are complementary techniques, where MPI and PSMA-
targeted 18F-DCFPyL PET can report on the whole-body distribution of administered cells, whereas MRI can
report on real-time homing and immediate retention of cells. This three-pronged approach of imaging the same
cell (labeled with SPIO for MPI and MRI, and 18F-DCFPyL for PET) will be applied for tracking of patient-
derived native (39b-SOD1+/AV4) and genome-corrected (39b-SOD1+/+) iPSCs, with and without differentiation
into motor neurons, in a transgenic SOD1G37R mouse model of ALS. Intra-arterial injection, an emerging cell
delivery route, will be used to study the feasibility of real-time image-guided cell injections aimed at obtaining a
more global cerebral cell distribution, while intraparenchymal injection in the spinal cord will be applied as a
clinically effective delivery technique to deliver cells locally at the site of impaired motor neurons. If successful,
this example imaging application of genome-corrected cells in ALS may encourage the use of MPI, MRI,
and/or PMSA-based PET imaging to interrogate the fate of cells in other disease scenarios in vivo.
使用基因编辑的干细胞,特别是患者衍生的IPSC进行细胞置换疗法是一种
具有疾病相关基因突变的遗传纠正的有吸引力的方法。如果这种疗法是
在未来的患者中追求,非常需要拥有无创细胞跟踪技术
这可以纵向报告移植细胞的分布和存活,以便更好地理解
他们的体内命运并优化个性化疗法。我们选择了肌萎缩性侧索硬化症(ALS),
作为目标疾病的一个毁灭性疾病,死亡率接近100%,其中运动丧失
神经元是导致肌肉麻痹的关键事件。对于家族形式的ALS,基因超氧化物中的突变
歧化酶1(SOD1)是疾病发展的病因。在此提案中,我们的目标是
将两种新型的实验成像方式(MPI和PSMA靶向18F-DCFPYP PET)连接
使用临床新兴技术(1H MRI)回答与功效相关的几个基本问题
和基因组编辑的细胞疗法的安全性。这些是互补的技术,其中MPI和PSMA-
有针对性的18F-DCFPYL PET可以报告施用细胞的全身分布,而MRI可以
关于实时归巢和立即保留细胞的报告。这种三管齐下的成像方法相同
细胞(用SPIO标记为MPI和MRI,PET 18F-DCFPYL)将用于跟踪患者 -
派生的天然(39B-SOD1+/AV4)和经基因组校正(39b-SOD1+/+)IPSC,具有和不分化
进入运动神经元,在ALS的转基因SOD1G37R小鼠模型中。动脉内注射,新出现的细胞
输送路线将用于研究实时图像引导的细胞注射的可行性,旨在获得
更全球的脑细胞分布,而脊髓中的核内注射将作为A
临床上有效的输送技术,可在运动神经元受损部位局部输送细胞。如果成功,
此示例成像在ALS中的基因组校正细胞的应用可能鼓励使用MPI,MRI,
和/或基于PMSA的PET成像,以在其他疾病情景中询问细胞的命运。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeff W. Bulte其他文献
Jeff W. Bulte的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeff W. Bulte', 18)}}的其他基金
Precision magnetic hyperthermia by integrating magnetic particle imaging
通过集成磁粒子成像实现精确磁热疗
- 批准号:
10296182 - 财政年份:2021
- 资助金额:
$ 48.33万 - 项目类别:
Precision magnetic hyperthermia by integrating magnetic particle imaging
通过集成磁粒子成像实现精确磁热疗
- 批准号:
10667448 - 财政年份:2021
- 资助金额:
$ 48.33万 - 项目类别:
Precision magnetic hyperthermia by integrating magnetic particle imaging
通过集成磁粒子成像实现精确磁热疗
- 批准号:
10415219 - 财政年份:2021
- 资助金额:
$ 48.33万 - 项目类别:
Intracellular Self-Assembly of Theranostic Nanoparticles for Enhanced Imaging and Tumor Therapy
用于增强成像和肿瘤治疗的治疗诊断纳米颗粒的细胞内自组装
- 批准号:
10207626 - 财政年份:2020
- 资助金额:
$ 48.33万 - 项目类别:
Intracellular Self-Assembly of Theranostic Nanoparticles for Enhanced Imaging and Tumor Therapy
用于增强成像和肿瘤治疗的治疗诊断纳米颗粒的细胞内自组装
- 批准号:
10400220 - 财政年份:2020
- 资助金额:
$ 48.33万 - 项目类别:
Intracellular Self-Assembly of Theranostic Nanoparticles for Enhanced Imaging and Tumor Therapy
用于增强成像和肿瘤治疗的治疗诊断纳米颗粒的细胞内自组装
- 批准号:
10063659 - 财政年份:2020
- 资助金额:
$ 48.33万 - 项目类别:
Non-Invasive Tracking of Genome-Corrected iPS cells in ALS
对 ALS 中基因组校正的 iPS 细胞进行无创追踪
- 批准号:
10447292 - 财政年份:2019
- 资助金额:
$ 48.33万 - 项目类别:
Non-Invasive Tracking of Genome-Corrected iPS cells in ALS
对 ALS 中基因组校正的 iPS 细胞进行无创追踪
- 批准号:
9810637 - 财政年份:2019
- 资助金额:
$ 48.33万 - 项目类别:
Non-Invasive Tracking of Genome-Corrected iPS cells in ALS
对 ALS 中基因组校正的 iPS 细胞进行无创追踪
- 批准号:
10006002 - 财政年份:2019
- 资助金额:
$ 48.33万 - 项目类别:
Label-Free Imaging of Composite Hyaluronic Acid Hydrogels in Regenerative Medicine
再生医学中复合透明质酸水凝胶的无标记成像
- 批准号:
9389085 - 财政年份:2017
- 资助金额:
$ 48.33万 - 项目类别:
相似国自然基金
磷脂结合蛋白Annexin A11相变在肌萎缩性脊髓侧索硬化症中的作用及机制研究
- 批准号:82101509
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
磷脂结合蛋白Annexin A11相变在肌萎缩性脊髓侧索硬化症中的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
C9orf72 多聚重复蛋白对miRNA生成和功能影响及其在ALS/FTD发病机制中的作用研究
- 批准号:81701261
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
线粒体蛋白CHCHD10稳定突触的作用及机制研究
- 批准号:31701036
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
伴TBK1突变肌萎缩性脊髓侧索硬化症中RIPK1活化的意义及机制研究
- 批准号:31701207
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Non-Invasive Tracking of Genome-Corrected iPS cells in ALS
对 ALS 中基因组校正的 iPS 细胞进行无创追踪
- 批准号:
9810637 - 财政年份:2019
- 资助金额:
$ 48.33万 - 项目类别:
Non-Invasive Tracking of Genome-Corrected iPS cells in ALS
对 ALS 中基因组校正的 iPS 细胞进行无创追踪
- 批准号:
10006002 - 财政年份:2019
- 资助金额:
$ 48.33万 - 项目类别: