Core E: Data Sciences Core
核心 E:数据科学核心
基本信息
- 批准号:10415088
- 负责人:
- 金额:$ 24.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-06 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAddressAffectAnimal ModelApplications GrantsAwardBehavioralBig DataBioinformaticsBiometryCaregiversClinicalCollaborationsComplexConsultConsultationsDataData AnalysesData ScienceData Science CoreData SetDatabasesDiseaseDown SyndromeElectronic Health RecordFacultyFundingFutureGenerationsGeneticGoalsGrantHealthHousingHuman ResourcesImageIndividualInstitutesIntellectual and Developmental Disabilities Research CentersIntellectual functioning disabilityInterdisciplinary StudyLinkMethodologyMethodsModelingModernizationOutcomePersonsPopulationPsychologyRare DiseasesRecordsReproducibilityResearchResearch DesignResearch PersonnelResearch Project GrantsResourcesRoleSample SizeSamplingServicesSourceStatistical Data InterpretationStatistical MethodsStatistical ModelsStructureTalentsTechniquesTestingTrainingTraining ActivityTraining SupportUniversitiesWorkautism spectrum disorderbiobehaviorbiomedical imagingcomplex datadata miningdata resourcedisabilityhuman modelimprovedimproved outcomeindividualized medicineinformatics infrastructureinformation processinginnovationlarge datasetslarge scale datamultimodal dataneuroimagingneuroinformaticsneurophysiologynovelpatient orientedprogramspublic health relevanceresearch and developmentspatiotemporalstatisticssuccesstargeted treatmenttooltranslational neuroscience
项目摘要
The success and impact of nearly every project in IDD hinges on the proper use of statistical techniques. Thus,
Core E has a critical role in facilitating research for all IDDRC investigators, as well as for the progress of the
other IDDRC Cores and Signature Research Project. Core E performs a unique function for IDDRC
investigators as it helps them identify and use the statistical and methodological expertise and resources
available at Vanderbilt University (VU) and Vanderbilt University Medical Center (VUMC) that are appropriate
for their questions – especially for more complicated research designs (e.g., many layers of nesting) or those
with statistical limitations (e.g., small sample sizes common in research with rare populations). Further, through
generative activity with Clinical Translational and Translational Neuroscience Cores B and C, Core E provides
sophisticated and non-trivial statistical methods and models tailored to IDD-related scientific questions (e.g.,
Bayesian spatio-temporal models for neuroimaging analysis). In addition to having considerable expertise in
biostatistics, neuro-statistics, and quantitative psychology, Vanderbilt is also a national leader in developing big
data structures and mining that data to advance health and development research, including the Synthetic
Derivative (SD), a de-identified dataset of electronic health record data collected from over ~2.8 million total
records. Though such big data structures are incredible resources to Vanderbilt, and especially IDDRC
investigators with their ability to capture large samples of rare disorders, it can be challenging to put the data in
analyzable formats and select suitable statistical approaches for analysis. Core E enables IDDRC investigators
to fully capitalize on all these VU/VUMC resources through three aims: Aim 1, which provides access to
modern statistical and data science methods to answer questions of relevance to IDD, including conducting
data analyses for the Signature IDDRC Research Project; Aim 2, which enhances training in IDD research for
those engaging in data science methods, including implementing a novel internal training grant program
between Data Sciences Institute trainees and the IDDRC; and Aim 3, which supports innovation in health-
related IDD research by facilitating use of large data sets such as the SD, including providing cutting-edge
consultations and tools for working with large-scale SD IDD-curated database that IDDRC investigators can
use for generating pilot data and conducting studies. Collectively, Core E’s aims and generative work and
interactions with other IDDRC Cores not only meets the immediate needs of IDDRC investigators, but also
anticipates future ones, by allowing for novel resources, platforms, and methods to be developed. By tackling
and solving complex, multi-modal data science questions, Core E is poised to contribute substantially
over the next 5 years to accelerating scientific discovery to improve the outcomes of people with IDDs.
缺碘症方面几乎每一个项目的成功和影响都取决于统计技术的适当使用。因此,在本发明中,
核心E在促进所有IDDRC调查人员的研究以及
其他IDDRC核心和签名研究项目。核心E执行IDDRC的独特功能
调查人员,因为它有助于他们确定和使用统计和方法的专门知识和资源
可在范德比尔特大学(VU)和范德比尔特大学医学中心(VUMC)获得,
对于他们的问题-特别是对于更复杂的研究设计(例如,多层嵌套)或那些
由于统计限制(例如,小样本量在研究罕见人群时很常见)。此外,通过
临床转化和转化神经科学核心B和C的生成活动,核心E提供
为缺碘症相关科学问题量身定制的复杂和非平凡的统计方法和模型(例如,
神经影像分析的贝叶斯时空模型)。除了在以下方面具有相当的专业知识外,
生物统计学,神经统计学和定量心理学,范德比尔特也是一个国家领导人在发展大
数据结构和挖掘这些数据,以推进健康和发展研究,包括综合
Derivative(SD)是一个去识别的电子健康记录数据集,收集了超过280万的数据
记录尽管这样的大数据结构对范德比尔特来说是不可思议的资源,尤其是IDDRC
研究人员有能力捕获大量罕见疾病样本,因此将数据纳入其中可能具有挑战性。
可分析的格式,并选择合适的统计方法进行分析。核心E使IDDRC调查人员
通过三个目标充分利用所有这些VU/VUMC资源:目标1,提供访问
采用现代统计和数据科学方法回答与缺碘症有关的问题,包括
目标2,加强碘缺乏病研究方面的培训,
那些从事数据科学方法的人,包括实施一项新的内部培训资助计划
数据科学研究所学员与IDDRC之间的合作;以及支持健康创新的目标3-
通过促进使用可持续发展等大型数据集,
咨询和工具,用于使用IDDRC调查人员可以
用于生成试点数据和进行研究。总的来说,核心E的目标和生成性工作,
与其他IDDRC核心的交互不仅满足了IDDRC调查人员的直接需求,
通过允许开发新的资源、平台和方法来预测未来的发展。通过解决
以及解决复杂的多模态数据科学问题,Core E准备做出重大贡献。
在未来5年内,我们将加速科学发现,以改善缺碘症患者的预后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hakmook Kang其他文献
Hakmook Kang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hakmook Kang', 18)}}的其他基金
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Research Grant














{{item.name}}会员




