Core E: Data Sciences Core
核心 E:数据科学核心
基本信息
- 批准号:10686050
- 负责人:
- 金额:$ 24.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-06 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAccelerationAddressAffectAnimal ModelApplications GrantsAwardBehavioralBig DataBioinformaticsBiometryCaregiversCollaborationsComplexConsultationsDataData AnalysesData ScienceData Science CoreData SetDatabasesDiseaseDown SyndromeEducationElectronic Health RecordFacultyFundingFutureGenerationsGeneticGoalsGrantHealthHousingHuman ResourcesImageIndividualInstitutionIntellectual and Developmental Disabilities Research CentersIntellectual functioning disabilityInterdisciplinary StudyLinkMethodologyMethodsModelingModernizationOutcomePersonsPopulationProductivityPsychologyRare DiseasesRecordsReproducibilityResearchResearch DesignResearch PersonnelResearch Project GrantsResourcesRoleSample SizeSamplingServicesSourceStatistical Data InterpretationStatistical MethodsStatistical ModelsStructureTalentsTechniquesTestingTrainingTraining ActivityUniversitiesWorkautism spectrum disorderbiobehaviorbiomedical imagingclinical translationcomplex datadata de-identificationdata miningdata resourcedisabilityhuman modelimprovedimproved outcomeindividualized medicineinformatics infrastructureinnovationlarge datasetslarge scale datamultimodal dataneuroimagingneuroinformaticsneurophysiologynovelpatient orientedprogramspublic health relevanceresearch and developmentspatiotemporalstatisticssuccesstargeted treatmenttooltranslational neuroscience
项目摘要
The success and impact of nearly every project in IDD hinges on the proper use of statistical techniques. Thus,
Core E has a critical role in facilitating research for all IDDRC investigators, as well as for the progress of the
other IDDRC Cores and Signature Research Project. Core E performs a unique function for IDDRC
investigators as it helps them identify and use the statistical and methodological expertise and resources
available at Vanderbilt University (VU) and Vanderbilt University Medical Center (VUMC) that are appropriate
for their questions – especially for more complicated research designs (e.g., many layers of nesting) or those
with statistical limitations (e.g., small sample sizes common in research with rare populations). Further, through
generative activity with Clinical Translational and Translational Neuroscience Cores B and C, Core E provides
sophisticated and non-trivial statistical methods and models tailored to IDD-related scientific questions (e.g.,
Bayesian spatio-temporal models for neuroimaging analysis). In addition to having considerable expertise in
biostatistics, neuro-statistics, and quantitative psychology, Vanderbilt is also a national leader in developing big
data structures and mining that data to advance health and development research, including the Synthetic
Derivative (SD), a de-identified dataset of electronic health record data collected from over ~2.8 million total
records. Though such big data structures are incredible resources to Vanderbilt, and especially IDDRC
investigators with their ability to capture large samples of rare disorders, it can be challenging to put the data in
analyzable formats and select suitable statistical approaches for analysis. Core E enables IDDRC investigators
to fully capitalize on all these VU/VUMC resources through three aims: Aim 1, which provides access to
modern statistical and data science methods to answer questions of relevance to IDD, including conducting
data analyses for the Signature IDDRC Research Project; Aim 2, which enhances training in IDD research for
those engaging in data science methods, including implementing a novel internal training grant program
between Data Sciences Institute trainees and the IDDRC; and Aim 3, which supports innovation in health-
related IDD research by facilitating use of large data sets such as the SD, including providing cutting-edge
consultations and tools for working with large-scale SD IDD-curated database that IDDRC investigators can
use for generating pilot data and conducting studies. Collectively, Core E’s aims and generative work and
interactions with other IDDRC Cores not only meets the immediate needs of IDDRC investigators, but also
anticipates future ones, by allowing for novel resources, platforms, and methods to be developed. By tackling
and solving complex, multi-modal data science questions, Core E is poised to contribute substantially
over the next 5 years to accelerating scientific discovery to improve the outcomes of people with IDDs.
几乎每个IDD项目的成功和影响都取决于统计技术的正确使用。因此,在本发明中,
核心E在促进所有IDDRC调查人员的研究以及
其他IDDRC核心和签名研究项目。核心E执行IDDRC的独特功能
调查人员,因为它有助于他们确定和使用统计和方法的专门知识和资源
可在范德比尔特大学(VU)和范德比尔特大学医学中心(VUMC)获得,
对于他们的问题-特别是对于更复杂的研究设计(例如,多层嵌套)或那些
由于统计限制(例如,小样本量在研究罕见人群时很常见)。此外,通过
临床转化和转化神经科学核心B和C的生成活动,核心E提供
为缺碘症相关科学问题量身定制的复杂和非平凡的统计方法和模型(例如,
神经影像分析的贝叶斯时空模型)。除了在以下方面具有相当的专业知识外,
生物统计学,神经统计学和定量心理学,范德比尔特也是一个国家领导人在发展大
数据结构和挖掘这些数据,以推进健康和发展研究,包括综合
Derivative(SD)是一个去识别的电子健康记录数据集,收集了超过280万的数据
记录尽管这样的大数据结构对范德比尔特来说是不可思议的资源,尤其是IDDRC
研究人员有能力捕获大量罕见疾病样本,因此将数据纳入其中可能具有挑战性。
可分析的格式,并选择合适的统计方法进行分析。核心E使IDDRC调查人员
通过三个目标充分利用所有这些VU/VUMC资源:目标1,提供访问
采用现代统计和数据科学方法回答与缺碘症有关的问题,包括
目标2,加强碘缺乏病研究方面的培训,
那些从事数据科学方法的人,包括实施一项新的内部培训资助计划
数据科学研究所学员与IDDRC之间的合作;以及支持健康创新的目标3-
通过促进使用可持续发展等大型数据集,
咨询和工具,用于使用IDDRC调查人员可以
用于生成试点数据和进行研究。总的来说,核心E的目标和生成性工作,
与其他IDDRC核心的交互不仅满足了IDDRC调查人员的直接需求,
通过允许开发新的资源、平台和方法来预测未来的发展。通过解决
以及解决复杂的多模态数据科学问题,Core E准备做出重大贡献。
在未来5年内,我们将加速科学发现,以改善缺碘症患者的预后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hakmook Kang其他文献
Hakmook Kang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hakmook Kang', 18)}}的其他基金
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Standard Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 24.93万 - 项目类别:
Standard Grant