Blending deep learning with probabilistic mechanistic models to predict and understand the evolution and function of adaptive immune receptors
将深度学习与概率机制模型相结合,以预测和理解适应性免疫受体的进化和功能
基本信息
- 批准号:10415985
- 负责人:
- 金额:$ 68.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAnimal ModelAntibodiesAntibody AffinityAntigensArchitectureAutoimmune DiseasesAutomobile DrivingBig DataBindingBiochemicalBiochemical ProcessCategoriesCell LineCharacteristicsCollectionComplementComplexDataData SetDependenceDiagnosisDiseaseEntropyEvolutionExposure toFoundationsGene ConversionGenerationsGoalsHigh-Throughput DNA SequencingHigh-Throughput Nucleotide SequencingHumanHybridsImmuneImmune responseImmune systemImmunoglobulin Somatic HypermutationImmunologic MemoryImmunologic ReceptorsImmunological ModelsImmunologicsImmunologistImmunologyImmunotherapyIn VitroIndividualKnock-outKnowledgeLaboratoriesMachine LearningMedicalMethodsModelingModificationMutationPathway interactionsPopulationProceduresProcessPropertyProphylactic treatmentResolutionSamplingScienceStatistical DistributionsStatistical MethodsStatistical ModelsT-Cell ReceptorT-LymphocyteT-cell receptor repertoireTechniquesTechnologyTestingTimeTrainingUpdateV(D)J RecombinationVaccinationVaccine DesignVaccinesValidationWorkalgorithm traininganalytical toolbasebiochemical modelcancer immunotherapycancer therapycomplex datadata complexitydeep learningdeep learning modeldeep neural networkdeep sequencingdesignexperimental studyfightingfunctional groupin vivoinsertion/deletion mutationlarge datasetsmachine learning methodmarkov modelpathogenprogenitorreceptorrepairedresponsesuccesstool
项目摘要
Project Summary
Scientific understanding of adaptive immune receptors (i.e. antibodies and T cell receptors) has the potential to
revolutionize prophylaxis, diagnosis, and treatment of disease. High‐throughput DNA sequencing and
functional experiments have now brought the study of adaptive immune receptors into the big‐data era. To
realize this potential of these data they must be matched with appropriately powerful analytical techniques.
Existing probabilistic and mechanistic models are insufficient to capture the complexities of these data, while a
naïve application of machine learning cannot leverage our profound existing knowledge of the immune
system.
The goal of this project is to blend deep learning with mechanistic modeling in order to predict and
understand the evolution and function of adaptive immune receptors. Aim 1: Develop generative models of
immune receptor sequences that capture the complexity of real adaptive immune receptor repertoires. These
will combine deep learning along with our knowledge of VDJ recombination, and provide a rigorous platform
for detailed repertoire comparison. Aim 2: Develop quantitative mechanistic models of antibody somatic
hypermutation that incorporate the underlying biochemical processes. Estimate intractable likelihoods using
deep learning to infer important latent variables, and validate models using knock‐out experiments in cell
lines. Aim 3: Develop hybrid deep learning models to predict binding properties from sequence data,
combining large experimentally‐derived binding data with even larger sets of immune sequences from human
immune memory samples. Incorporate structural information via 3D convolution or distance‐based penalties.
These tools will reveal the full power of immune repertoire data for medical applications. We will obtain more
rigorous comparisons of repertoires via their distribution in a relevant space. These will reveal the effects of
immune perturbations such as vaccination and disease, allowing us to pick out sequences that are impacted by
these perturbations. We will have a greater quantitative understanding of somatic hypermutation in vivo, and
statistical models that appropriately capture long‐range effects of collections of mutations. We will also have
algorithms that will be able to combine repertoire data and sparse binding data to predict binding properties.
Put together, these advances will enable rational vaccine design, treatment for autoimmune disease, and
identification of T cells that are promising candidates for cancer immunotherapy.
项目总结
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inference of B cell clonal families using heavy/light chain pairing information.
- DOI:10.1371/journal.pcbi.1010723
- 发表时间:2022-11
- 期刊:
- 影响因子:4.3
- 作者:
- 通讯作者:
Enabling Inference for Context-Dependent Models of Mutation by Bounding the Propagation of Dependency.
通过限制依赖性的传播来实现上下文相关的突变模型的推理。
- DOI:10.1089/cmb.2021.0644
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Matsen4th,FrederickA;Ralph,PeterL
- 通讯作者:Ralph,PeterL
Reconstruction of a polyclonal ADCC antibody repertoire from an HIV-1 non-transmitting mother.
- DOI:10.1016/j.isci.2023.106762
- 发表时间:2023-05-19
- 期刊:
- 影响因子:5.8
- 作者:Yaffe, Zak A.;Ding, Shilei;Sung, Kevin;Chohan, Vrasha;Marchitto, Lorie;Doepker, Laura;Ralph, Duncan;Nduati, Ruth;Matsen, Frederick A.;Finzi, Andres;Overbaugh, Julie
- 通讯作者:Overbaugh, Julie
Lack of Evidence for a Substantial Rate of Templated Mutagenesis in B Cell Diversification.
- DOI:10.4049/jimmunol.2000092
- 发表时间:2020-08-15
- 期刊:
- 影响因子:0
- 作者:Fukuyama J;Olson BJ;Matsen FA 4th
- 通讯作者:Matsen FA 4th
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frederick Albert Matsen其他文献
Frederick Albert Matsen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frederick Albert Matsen', 18)}}的其他基金
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10654594 - 财政年份:2021
- 资助金额:
$ 68.96万 - 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10266670 - 财政年份:2021
- 资助金额:
$ 68.96万 - 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10434141 - 财政年份:2021
- 资助金额:
$ 68.96万 - 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10593362 - 财政年份:2021
- 资助金额:
$ 68.96万 - 项目类别:
Blending deep learning with probabilistic mechanistic models to predict and understand the evolution and function of adaptive immune receptors
将深度学习与概率机制模型相结合,以预测和理解适应性免疫受体的进化和功能
- 批准号:
10593356 - 财政年份:2019
- 资助金额:
$ 68.96万 - 项目类别:
Blending deep learning with probabilistic mechanistic models to predict and understand the evolution and function of adaptive immune receptors
将深度学习与概率机制模型相结合,以预测和理解适应性免疫受体的进化和功能
- 批准号:
10159730 - 财政年份:2019
- 资助金额:
$ 68.96万 - 项目类别:
Leveraging deep sequencing data to understand antibody maturation
利用深度测序数据了解抗体成熟度
- 批准号:
9119033 - 财政年份:2014
- 资助金额:
$ 68.96万 - 项目类别:
Leveraging deep sequencing data to understand antibody maturation
利用深度测序数据了解抗体成熟度
- 批准号:
9318527 - 财政年份:2014
- 资助金额:
$ 68.96万 - 项目类别:
Leveraing deep sequencing data to understand antibody maturation
利用深度测序数据了解抗体成熟度
- 批准号:
8825760 - 财政年份:2014
- 资助金额:
$ 68.96万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 68.96万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 68.96万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 68.96万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 68.96万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 68.96万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 68.96万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 68.96万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 68.96万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 68.96万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 68.96万 - 项目类别:
Research Grant