Leveraging deep sequencing data to understand antibody maturation

利用深度测序数据了解抗体成熟度

基本信息

项目摘要

DESCRIPTION (provided by applicant): Intellectual Merit: The health of each human being is critically dependent on its particular immune system. The adaptive component of the immune system is the means by which the body learns to recognize pathogens. Deficiencies in adaptive immunity place the individual as well as the population at risk for infectious diseases and cancers. The currently available mathematical and computational tools are not yet ready to characterize the full collection of changes in the antibody-mediated adaptive immune system occurring in response to exposure to new pathogenic entities. In particular, state-of-the-art methods are hindered by only focusing on a small subset of the immune cells at a time, using simple models of immune cell maturation that are not derived from data, and only giving point estimates for parameters of those models. The investigators propose to address these limitations by developing a novel approach to high throughput sequencing data from antibody genes by developing: 1) the first fully Bayesian inferential approach to immune cell maturation; 2) the first comprehensive statistical model of antibody cell maturation and evolution, including sequence models of antibody somatic hypermutation inferred directly from data; 3) innovative inferential tools to obtain posterior distributions on the joint assignment of collections of itemsto discrete parameters - scalable computational implementations of these models and inferential frameworks leading to their widespread application. In short, our work will both develop much needed analytical methods for a recently developed type of data and open a new area of statistical research. Broader Impacts: Comprehensive statistical modeling and inference of high throughput sequencing of immune cell receptors will provide information needed for rational vaccine design, prediction of susceptibility to infections, and understanding of the pathogenesis of immune cell cancers. B cell lineage reconstructions will allow scientists to track the changes that happen to an antibody in response to pathogen evolution, enabling vaccines to stay one step ahead of pathogens. An extension of this approach will be to use these tools to characterize not only the immunity of individuals, but also of populations, for example in their ability to resist epidemics. Our formalization will motivate research on a new type of inference problem with challenging statistical aspects. Our methods will be implemented in open-source software, so that any immunology lab or clinic can use these new approaches. Moreover, the proposed statistical methodology should find other applications beyond immunology, for example, in metagenomics.
描述(由申请人提供):智力优点:每个人的健康都严重依赖于其特定的免疫系统。免疫系统的适应性成分是身体学习识别病原体的手段。适应性免疫的缺陷使个人和群体处于感染性疾病和癌症的风险之中。目前可用的数学和计算工具尚未准备好表征抗体介导的适应性免疫系统中响应于暴露于新病原体而发生的变化的全部集合。特别地,现有技术的方法受到阻碍,因为一次仅关注免疫细胞的一小部分,使用不是从数据中导出的免疫细胞成熟的简单模型,并且仅给出这些模型的参数的点估计。研究人员建议通过开发一种新的方法来解决这些限制,该方法通过开发:1)第一种完全贝叶斯推理的免疫细胞成熟方法; 2)第一种抗体细胞成熟和进化的综合统计模型,包括直接从数据推断的抗体体细胞超突变的序列模型; 3)创新的推理工具,以获得后验分布的联合分配项目的集合离散参数-可扩展的计算实现这些模型和推理框架,导致其广泛的应用。简而言之,我们的工作将为最近开发的数据类型开发急需的分析方法,并开辟统计研究的新领域。更广泛的影响:免疫细胞受体的高通量测序的综合统计建模和推断将为合理的疫苗设计、对感染的易感性的预测以及对免疫细胞癌症的发病机制的理解提供所需的信息。B细胞谱系重建将使科学家能够跟踪抗体响应病原体进化而发生的变化,使疫苗能够领先病原体一步。这种方法的一个扩展将是使用这些工具不仅描述个人的免疫力,而且描述群体的免疫力,例如他们抵抗流行病的能力。我们的形式化将激励研究一种新的类型的推理问题具有挑战性的统计方面。我们的方法将在开源软件中实现,以便任何免疫学实验室或诊所都可以使用这些新方法。此外,所提出的统计方法应该在免疫学之外找到其他应用,例如在宏基因组学中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frederick Albert Matsen其他文献

Frederick Albert Matsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frederick Albert Matsen', 18)}}的其他基金

Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
  • 批准号:
    10654594
  • 财政年份:
    2021
  • 资助金额:
    $ 37.68万
  • 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
  • 批准号:
    10266670
  • 财政年份:
    2021
  • 资助金额:
    $ 37.68万
  • 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
  • 批准号:
    10434141
  • 财政年份:
    2021
  • 资助金额:
    $ 37.68万
  • 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
  • 批准号:
    10593362
  • 财政年份:
    2021
  • 资助金额:
    $ 37.68万
  • 项目类别:
Blending deep learning with probabilistic mechanistic models to predict and understand the evolution and function of adaptive immune receptors
将深度学习与概率机制模型相结合,以预测和理解适应性免疫受体的进化和功能
  • 批准号:
    10415985
  • 财政年份:
    2019
  • 资助金额:
    $ 37.68万
  • 项目类别:
Blending deep learning with probabilistic mechanistic models to predict and understand the evolution and function of adaptive immune receptors
将深度学习与概率机制模型相结合,以预测和理解适应性免疫受体的进化和功能
  • 批准号:
    10593356
  • 财政年份:
    2019
  • 资助金额:
    $ 37.68万
  • 项目类别:
Blending deep learning with probabilistic mechanistic models to predict and understand the evolution and function of adaptive immune receptors
将深度学习与概率机制模型相结合,以预测和理解适应性免疫受体的进化和功能
  • 批准号:
    10159730
  • 财政年份:
    2019
  • 资助金额:
    $ 37.68万
  • 项目类别:
Leveraging deep sequencing data to understand antibody maturation
利用深度测序数据了解抗体成熟度
  • 批准号:
    9119033
  • 财政年份:
    2014
  • 资助金额:
    $ 37.68万
  • 项目类别:
Leveraing deep sequencing data to understand antibody maturation
利用深度测序数据了解抗体成熟度
  • 批准号:
    8825760
  • 财政年份:
    2014
  • 资助金额:
    $ 37.68万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 37.68万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 37.68万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.68万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了