Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
基本信息
- 批准号:10654594
- 负责人:
- 金额:$ 74.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsCOVID-19 pandemicCodeCollectionComplexComputational BiologyCustomDataData SetDiagnosticDisciplineDiseaseDisease OutbreaksEpidemicExclusionFoundationsFriendsFunctional disorderGenomeGraphHeterogeneityLearningLibrariesLocationMachine LearningMarkov chain Monte Carlo methodologyMathematicsMethodsModelingModernizationModificationNatureNeural Network SimulationPatternPhylogenetic AnalysisPredispositionProceduresPublic HealthResearch PersonnelSamplingStatistical ModelsStructureTechnologyTensorFlowTimeTrainingTreesUncertaintyUpdateViralViral GenomeWorkWritingcloud baseddata integrationdata modelingepidemiologic dataflexibilitygenomic datahigh dimensionalityinsightknowledgebasemachine learning frameworkmarginalizationmathematical methodsmigrationneural networknovel strategiesopen sourcepathogenpreventscale uptheoriestooltransmission processuser-friendlyviral epidemicviral genomicsviral transmission
项目摘要
Project Abstract/Summary
The SARS-CoV-2 pandemic underlines both our susceptibility to and the toll of a global pathogen outbreak.
Phylogenetic analysis of viral genomes provides key insight into disease pathophysiology, spread and po-
tential control. However, if these methods are to be used in a viral control strategy they must reliably account for
uncertainty and be able to perform inference on 1,000s of genomes in actionable time. Scaling Bayesian phylogenet-
ics to meet this need is a grand challenge that is unlikely to be met by optimizing existing algorithms.
We will meet this challenge with a radically new approach: Bayesian variational inference for phylogenet-
ics (VIP) using flexible distributions on phylogenetic trees that are fit using gradient-based methods analogous
to how one efficiently trains massive neural networks. By taking a variational approach we will also be able
to integrate phylogenetic analysis into very powerful open-source modeling frameworks such as TensorFlow
and PyTorch. This will open up new classes of models, such as neural network models, to integrate data such
as sampling location and migration patterns with phylogenetic inference. These flexible models will inform
strategies for viral control.
In Aim 1 we will develop the theory necessary for scalable and reliable VIP, including subtree marginal-
ization, local gradient updates needed for online algorithms, convergence diagnostics, and parameter support
estimates. We will implement these algorithms in our C++ foundation library for VIP. In Aim 2 we will
develop a flexible TensorFlow-based modeling platform for phylogenetics, enabling a whole new realm of
phylogenetic models based on neural networks to learn phylodynamic heterogeneity with minimal program-
ming effort. We will provide efficient gradients to this implementation via our C++ library. In Aim 3 we will
use the fact that VIP posteriors are durable and extensible descriptions of the full data posterior to enable
dynamic online computation of variational posteriors, including divide-and-conquer Bayesian phylogenetics.
This work will enable a cloud-based viral phylogenetics solution to rapidly update our current estimate of the
posterior distribution when new data arrive or the model is modified.
1
项目摘要/总结
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Representing and extending ensembles of parsimonious evolutionary histories with a directed acyclic graph.
- DOI:10.1007/s00285-023-02006-3
- 发表时间:2023-10-25
- 期刊:
- 影响因子:1.9
- 作者:
- 通讯作者:
Learnable Topological Features for Phylogenetic Inference via Graph Neural Networks
- DOI:10.48550/arxiv.2302.08840
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Cheng Zhang
- 通讯作者:Cheng Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frederick Albert Matsen其他文献
Frederick Albert Matsen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frederick Albert Matsen', 18)}}的其他基金
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10266670 - 财政年份:2021
- 资助金额:
$ 74.48万 - 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10434141 - 财政年份:2021
- 资助金额:
$ 74.48万 - 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10593362 - 财政年份:2021
- 资助金额:
$ 74.48万 - 项目类别:
Blending deep learning with probabilistic mechanistic models to predict and understand the evolution and function of adaptive immune receptors
将深度学习与概率机制模型相结合,以预测和理解适应性免疫受体的进化和功能
- 批准号:
10415985 - 财政年份:2019
- 资助金额:
$ 74.48万 - 项目类别:
Blending deep learning with probabilistic mechanistic models to predict and understand the evolution and function of adaptive immune receptors
将深度学习与概率机制模型相结合,以预测和理解适应性免疫受体的进化和功能
- 批准号:
10593356 - 财政年份:2019
- 资助金额:
$ 74.48万 - 项目类别:
Blending deep learning with probabilistic mechanistic models to predict and understand the evolution and function of adaptive immune receptors
将深度学习与概率机制模型相结合,以预测和理解适应性免疫受体的进化和功能
- 批准号:
10159730 - 财政年份:2019
- 资助金额:
$ 74.48万 - 项目类别:
Leveraging deep sequencing data to understand antibody maturation
利用深度测序数据了解抗体成熟度
- 批准号:
9318527 - 财政年份:2014
- 资助金额:
$ 74.48万 - 项目类别:
Leveraging deep sequencing data to understand antibody maturation
利用深度测序数据了解抗体成熟度
- 批准号:
9119033 - 财政年份:2014
- 资助金额:
$ 74.48万 - 项目类别:
Leveraing deep sequencing data to understand antibody maturation
利用深度测序数据了解抗体成熟度
- 批准号:
8825760 - 财政年份:2014
- 资助金额:
$ 74.48万 - 项目类别:
相似国自然基金
COVID-19疫情对我国儿童生长发育影响的异质性研究
- 批准号:42371429
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
COVID-19疫情爆发后武汉地区儿童副流感病毒3型的流行趋势和进化规律研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
COVID-19疫情下PM2.5暴露通过microRNA/HMGB1途径调控儿童胰岛素敏感性的机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
COVID-19疫情的多尺度传播建模及其预警与控制研究
- 批准号:82161148012
- 批准年份:2021
- 资助金额:200 万元
- 项目类别:国际(地区)合作与交流项目
耦合个体流行病学影响因素与宏观干预行为的COVID-19疫情智能体患病风险预测模型研究
- 批准号:42161071
- 批准年份:2021
- 资助金额:36 万元
- 项目类别:地区科学基金项目
COVID-19疫情的多尺度传播建模及其预警与控制研究
- 批准号:
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
耦合空间化和个体化的传染病时空传播建模与分析:以南昌市COVID-19疫情为例
- 批准号:42001342
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 74.48万 - 项目类别:
Standard Grant
Depopulating Holding Centers during the COVID-19 Pandemic
COVID-19 大流行期间收容中心的人口减少
- 批准号:
2413624 - 财政年份:2024
- 资助金额:
$ 74.48万 - 项目类别:
Standard Grant
Return to work after the COVID-19 pandemic: a biopsychosocial perspective
COVID-19 大流行后重返工作岗位:生物心理社会视角
- 批准号:
24K16416 - 财政年份:2024
- 资助金额:
$ 74.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Leveraging 'Positive Deviance' to improve learning under COVID-19 pandemic. A randomized intervention in rural East Africa
利用“正偏差”改善 COVID-19 大流行期间的学习。
- 批准号:
23K20687 - 财政年份:2024
- 资助金额:
$ 74.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging an Existing Longitudinal Observational Cohort to Understand the Impacts of Cannabis Legalization and the COVID-19 Pandemic on Alcohol and Cannabis Use in At-risk Young Adults
利用现有的纵向观察队列来了解大麻合法化和 COVID-19 大流行对高危年轻人酒精和大麻使用的影响
- 批准号:
478397 - 财政年份:2023
- 资助金额:
$ 74.48万 - 项目类别:
Operating Grants
Genomic Epidemiology of Methicillin-Resistant Staphylococcus aureus Infections Prior to and During the COVID-19 Pandemic
COVID-19 大流行之前和期间耐甲氧西林金黄色葡萄球菌感染的基因组流行病学
- 批准号:
494305 - 财政年份:2023
- 资助金额:
$ 74.48万 - 项目类别:
Operating Grants
Fact-finding survey of nursing diagnoses, nursing outcomes, and nursing interventions in medical institution and edcational institution under COVID-19 pandemic
COVID-19大流行背景下医疗机构和教育机构护理诊断、护理结果和护理干预的实况调查
- 批准号:
23K09822 - 财政年份:2023
- 资助金额:
$ 74.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Communities in Crises: The Dynamics of Social Resources for Resilience and Recovery in the Wake of the COVID-19 Pandemic
危机中的社区:COVID-19 大流行后社会资源的弹性和恢复动态
- 批准号:
ES/W00349X/1 - 财政年份:2023
- 资助金额:
$ 74.48万 - 项目类别:
Research Grant
Impact of Different Learning Modalities on Science and Mathematics Teachers' Effectiveness and Retention during the COVID-19 Pandemic
COVID-19 大流行期间不同学习方式对科学和数学教师的有效性和保留率的影响
- 批准号:
2243392 - 财政年份:2023
- 资助金额:
$ 74.48万 - 项目类别:
Continuing Grant
Did business support measures during COVID-19 pandemic create Zombie firms?: Evidence from Post-pandemic corporate performance
COVID-19 大流行期间的企业支持措施是否创造了僵尸公司?:大流行后企业绩效的证据
- 批准号:
23K18808 - 财政年份:2023
- 资助金额:
$ 74.48万 - 项目类别:
Grant-in-Aid for Research Activity Start-up