Quantifying and improving radiotherapy outcomes among Veterans

量化和改善退伍军人的放射治疗结果

基本信息

  • 批准号:
    10417020
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

For more than a century, radiation has been used as an effective therapeutic modality for many different cancers and other diseases. Today, radiation therapy is clinically indicated for more than half of all cancer patients, with the ability to provide cure, local or regional control, and symptomatic palliation depending upon the clinical context. However, radiation can leave a lasting mark on the normal tissues left behind. In particular, it has long been known that ionizing radiation can promote cancer in otherwise normal tissue. While it is relatively rare for an individual to develop a secondary malignancy (radiation-induced cancer following treatment for a separate cancer), actual estimates of this rate vary widely according to different studies. Furthermore, patient-level discussions of secondary malignancy rates are understandably variable, neglect any understanding of the role of radiation dose or treatment site, and are generally universal assumptions not tailored to the disease or the patient themselves. My goal is to better understand the individualized risk of cancer induced by ionizing radiation. My central hypothesis is that individual genetic variability is likely to modify the risks of radiation-induced malignancy. However we have poor quantitative insights and an overall incomplete picture of the identity, nature, and effect size of genetic determinants of these risks. The ultimate goal of this proposal is to develop improved risk prediction frameworks incorporating prospective genetic stratification. This would be invaluable for treatment-related clinical decision-making, patient counseling, and tailoring post-radiation screening paradigms. I plan to test my central hypothesis by pursuing the following three Specific Aims: Aim 1. Identify a high-confidence cohort of Veterans receiving radiation therapy Aim 2. Characterize second and secondary malignancy rates within the VA Aim 3. Quantify genetic risk factors of radiation-induced secondary malignancies To accomplish these aims, I will first implement, validate, and apply automated dose quantification tools to national-level cohort data from the VA Corporate Data Warehouse (CDW), to extract radiotherapy details such as date, modality, dose, and fractionation, among other clinically important radiotherapy treatment variables. I will then identify new cancer diagnos(es) following initial cancer treatment and perform propensity matching of second cancer risk for Veterans exposed or unexposed to radiotherapy. Moreover, I will quantify second and presumed secondary malignancy rates among individuals as a function of estimated integral radiation dose. Using genetic data from the Million Veteran Program (MVP), I will measure enrichment and potential functional significance of genetic variants among a cohort of Veterans with radiation-induced secondary malignancy. I will also identify putative DNA repair defects and other rare variants in known cancer predisposition genes among Veterans with second cancers. My completion of the research described in Aims 1, 2 and 3 is expected to establish a detailed understanding of genetic risk factors for radiation-induced malignancy. Moreover, these Aims will establish a highly valuable cohort of veterans with curated radiotherapy and secondary malignancy information, along with corresponding germline genetic data. Ultimately, these resources and results are expected to have a profound impact on current radiation risk assessment frameworks, by deepening our understanding of the interplay between individual genetics and personalized risks.
一个多世纪以来,放疗一直是一种有效的治疗方式

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reid Thompson其他文献

Reid Thompson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Reid Thompson', 18)}}的其他基金

Quantifying and improving radiotherapy outcomes among Veterans
量化和改善退伍军人的放射治疗结果
  • 批准号:
    9892367
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Quantifying and improving radiotherapy outcomes among Veterans
量化和改善退伍军人的放射治疗结果
  • 批准号:
    10651694
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:

相似海外基金

NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
  • 批准号:
    2335999
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411529
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411530
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
  • 批准号:
    2419343
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
  • 批准号:
    2401507
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
  • 批准号:
    2334679
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
  • 批准号:
    2243955
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
  • 批准号:
    DP240102658
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了