Federated Learning for Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景组学分析进行放射治疗最佳决策的联邦学习
基本信息
- 批准号:10417829
- 负责人:
- 金额:$ 15.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-06 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAwarenessBayesian NetworkBenchmarkingBenefits and RisksBig DataBig Data MethodsBiological MarkersCase StudyCharacteristicsClinicalClinical Decision Support SystemsComplexComputer softwareComputersDataData AggregationData SetDecision MakingDecision Support SystemsDiseaseDoseEnvironmentEthicsGenomicsGoalsGraphHostageHumanImageImprove AccessInfrastructureInstitutionIntelligenceLearningLegalLiverLungMachine LearningMalignant NeoplasmsMalignant neoplasm of liverMalignant neoplasm of lungMethodsModelingModernizationNatureNormal tissue morphologyOutcomePatient PreferencesPatientsPerformancePhysiciansPlayPredictive FactorPrivacyProceduresProcessProteomicsPsychological reinforcementQuality of lifeRadiation Dose UnitRadiation therapyRadiology SpecialtyReaction TimeRegimenRewardsRiskRoleSample SizeScheduleSiteSoftware ToolsSupervisionSystemTechniquesTestingTimeToxic effectTrainingTreatment ProtocolsUncertaintyWorkapplication programming interfacebaseclinical decision supportclinical practicecomputer human interactioncost effectivedata sharingdeep learningdeep reinforcement learningdemographicsexperiencefederated learningfractionated radiationheuristicshigh rewardhigh riskimage guidedimprovedindividual patientirradiationknowledge baselearning algorithmlearning strategymachine learning algorithmmachine learning methodmachine learning modelneoplastic cellopen sourceoutcome predictionpersonalized decisionpersonalized medicinepopulation basedpredicting responsepredictive modelingprofiles in patientsprototyperadiation riskradiomicsrapid growthresponsesocioeconomicssoftware systemssuccesssupervised learningsupport toolstherapy outcometooltreatment choicetreatment durationtreatment optimizationtreatment responseusabilityuser-friendly
项目摘要
The complex environment of modern radiation therapy (RT) comprises data from a rich combination of patient-
specific information including: demographics, physical characteristics of high-energy dose, features subsequent
to repeated application of image-guidance (radiomics), and biological markers (genomics, proteomics, etc.),
generated before and/or over a treatment period that can span few days to several weeks. Rapid growth of these
available and untapped “pan-Omics” data, invites ample opportunities for Big data analytics to deliver on the
promise of personalized medicine in RT. This is particularly true in promising but high-risk RT procedures such
as stereotactic body RT (SBRT), which have witnessed tremendous expansion due to clinical successes in early
disease stages and socio-economic benefits of shortened high dose treatments. This has led to the desire to
exploit these treatments into more advanced stages of cancer, however, the unknown risks associated with
increased toxicities hamper its potential. Therefore, robust clinical decision support systems (CDSSs) capable
of exploring the complex pan-Omics interaction landscape with the goal of exploiting known principles of
treatment response before and during the course of fractionated RT are urgently needed. The long-term goal of
this project is to overcome barriers related to prediction uncertainties and human-computer interactions, which
are currently limiting the ability to make personalized clinical decisions for real-time response-based adaptation
in radiotherapy from available data. To meet this need and overcome current challenges, we will develop and
quantitively evaluate: (1) federated graph-based supervised machine learning algorithms for robust prediction
outcomes before and during RT; (2) federated deep reinforcement learning to dynamically optimize treatment
adaptation; and (3) a user-centered software prototype for RT decision support using the extendable XNAT
platform, with the broader goal of building a comprehensive real-time framework for outcome modeling and
response-based adaption in RT. We hypothesize that the use of advanced federated machine learning
techniques and user-centered tools will unlock the potentials to move from current population-based approaches
limited by subjective experiences and heuristic rules into robust, patient-specific, user-friendly CDSSs. This
approach and its corresponding software tools will be tested within two clinical RT sites of lung and liver cancers,
to demonstrate its versatility and highlight pertinent human-computer factors and cancer specific issues.
Impact statement: Patient-specific big data are now available before and/or during RT courses, offering new
and untapped opportunities for personalized treatment. This study will overcome current shortcomings of
population-based approaches and data underuse in current RT practice by investigating and developing a
federated user-centered, personalized CDSS with the need for centralized data sharing and test its performance
in rewarding but high-risk RT scenarios. The approach is also applicable to other modern cancer regimens.
现代放射治疗 (RT) 的复杂环境包含来自患者的丰富组合的数据
具体信息包括:人口统计、高能剂量的身体特征、后续特征
重复应用图像引导(放射组学)和生物标记(基因组学、蛋白质组学等),
在可能持续几天到几周的治疗期之前和/或期间产生。这些的快速增长
可用且未开发的“泛组学”数据为大数据分析带来了充足的机会来实现
RT 中个性化医疗的前景。在有前景但高风险的 RT 手术中尤其如此,例如
立体定向全身放疗(SBRT),由于早期的临床成功而得到了巨大的扩展
疾病阶段和缩短高剂量治疗的社会经济效益。这导致了人们的愿望
利用这些治疗方法治疗更晚期的癌症,然而,与这些治疗相关的未知风险
毒性增加阻碍了其潜力。因此,强大的临床决策支持系统(CDSS)能够
探索复杂的泛组学相互作用景观,目标是利用已知的原理
迫切需要分次放疗之前和期间的治疗反应。长期目标是
该项目旨在克服与预测不确定性和人机交互相关的障碍,
目前正在限制为基于实时响应的适应做出个性化临床决策的能力
根据现有数据,放射治疗中。为了满足这一需求并克服当前的挑战,我们将开发和
定量评估:(1)基于联邦图的监督机器学习算法,用于稳健预测
放疗前和放疗期间的结果; (2)联合深度强化学习动态优化治疗
适应; (3) 使用可扩展的 XNAT 提供 RT 决策支持的以用户为中心的软件原型
平台,其更广泛的目标是为结果建模和构建一个全面的实时框架
RT 中基于响应的适应。我们假设使用先进的联合机器学习
技术和以用户为中心的工具将释放当前基于人群的方法的潜力
受主观经验和启发式规则的限制,变成强大的、针对患者的、用户友好的 CDSS。这
该方法及其相应的软件工具将在肺癌和肝癌的两个临床 RT 中心进行测试,
展示其多功能性并突出相关的人机因素和癌症特定问题。
影响陈述:患者特定的大数据现在可以在 RT 课程之前和/或期间使用,提供新的
以及尚未开发的个性化治疗机会。本研究将克服目前的不足
通过调查和开发基于人群的方法和当前 RT 实践中未充分利用的数据
联合以用户为中心的个性化CDSS,需要集中数据共享并测试其性能
在有回报但高风险的 RT 场景中。该方法也适用于其他现代癌症治疗方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Issam M. El Naqa其他文献
Issam M. El Naqa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Issam M. El Naqa', 18)}}的其他基金
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 15.87万 - 项目类别:
Cerenkov Multi-Spectral Imaging (CMSI) for Adaptation and Real-Time Imaging in Radiotherapy
用于放射治疗中适应和实时成像的切伦科夫多光谱成像 (CMSI)
- 批准号:
10080509 - 财政年份:2020
- 资助金额:
$ 15.87万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10416058 - 财政年份:2019
- 资助金额:
$ 15.87万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10669029 - 财政年份:2019
- 资助金额:
$ 15.87万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10299634 - 财政年份:2019
- 资助金额:
$ 15.87万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
9816658 - 财政年份:2019
- 资助金额:
$ 15.87万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10250778 - 财政年份:2019
- 资助金额:
$ 15.87万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10245972 - 财政年份:2018
- 资助金额:
$ 15.87万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
9594556 - 财政年份:2018
- 资助金额:
$ 15.87万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10470308 - 财政年份:2018
- 资助金额:
$ 15.87万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 15.87万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 15.87万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 15.87万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 15.87万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 15.87万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 15.87万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 15.87万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 15.87万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 15.87万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 15.87万 - 项目类别:
Research Grant














{{item.name}}会员




