Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
基本信息
- 批准号:10416058
- 负责人:
- 金额:$ 45.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-06 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAwarenessBayesian NetworkBenchmarkingBenefits and RisksBig DataBig Data MethodsBiological MarkersCase StudyCharacteristicsClinicalClinical Decision Support SystemsComplexComputer AssistedComputer softwareComputersDataData ReportingData ScientistData SetDatabasesDecision MakingDecision Support SystemsDevelopmentDiseaseDoseDose FractionationEnvironmentEquilibriumGenomicsGoalsGraphHostageHumanInfrastructureInstitutionIntelligenceInvestigationKnowledgeLearningLiverLungMachine LearningMalignant NeoplasmsMalignant neoplasm of liverMalignant neoplasm of lungMedicalMethodsModelingModernizationNatureNormal tissue morphologyOncologyOutcomePatient PreferencesPatientsPerformancePhysiciansPlayProceduresProteomicsPsychological reinforcementQuality of lifeRadiation Dose UnitRadiation therapyReaction TimeRegimenRegretsRewardsRiskRoleScheduleSiteSoftware ToolsSourceSystemTechniquesTestingTimeToxic effectTreatment ProtocolsUncertaintyWorkbaseclinical centerclinical decision supportclinical practiceclinical research sitecomputer human interactiondeep learningdeep reinforcement learningdemographicsexperiencefractionated radiationheuristicshigh rewardhigh riskimage guidedimaging biomarkerimprovedindividual patientirradiationknowledge baselearning strategymachine learning algorithmmachine learning frameworkmachine learning methodmultidisciplinaryneoplastic celloutcome predictionpersonalized decisionpersonalized medicinepoint of care testingpopulation basedpredicting responsepredictive markerprofiles in patientsprototyperadiation riskradiomicsrapid growthresponseside effectsocioeconomicssuccesssupervised learningsupport toolstherapy outcometooltreatment choicetreatment durationtreatment optimizationtreatment responsetumorusabilityuser-friendly
项目摘要
The complex environment of modern radiation therapy (RT) comprises data from a rich combination of patient-
specific information including: demographics, physical characteristics of high-energy dose, features subsequent
to repeated application of image-guidance (radiomics), and biological markers (genomics, proteomics, etc.),
generated before and/or over a treatment period that can span few days to several weeks. Rapid growth of these
available and untapped “pan-Omics” data, invites ample opportunities for Big data analytics to deliver on the
promise of personalized medicine in RT. This particularly true in promising but high-risk RT procedures such as
stereotactic body RT (SBRT), which have witnessed tremendous expansion due to clinical successes in early
disease stages and socio-economic benefits of shortened high dose treatments. This has led to the desire to
exploit these treatments into more advanced stages of cancer, however, the unknown risks associated with
increased toxicities hamper its potential. Therefore, robust clinical decision support systems (CDSSs) capable
of exploring the complex pan-Omics interaction landscape with the goal of exploiting known principles of
treatment response before and during the course of fractionated RT are urgently needed. The long-term goal of
this project is to overcome barriers related to prediction uncertainties and human-computer interactions, which
are currently limiting the ability to make personalized clinical decisions for real-time response-based adaptation
in radiotherapy from available data. To meet this need and overcome current challenges, we have assembled a
multidisciplinary team including: clinicians, medical physicists, data scientists, and human factor experts.
Specifically, we will develop and quantitively evaluate: (1) graph-based supervised machine learning algorithms
for robust prediction outcomes before and during RT; (2) deep reinforcement learning to dynamically optimize
treatment adaptation; and (3) a user-centered software prototype for RT decision support, with the broader goal
of building a comprehensive real-time framework for outcome modeling and response-based adaption in RT. We
hypothesize that the use of advanced machine learning techniques and user-centered tools will unlock the
potentials to move from current population-based approaches limited by subjective experiences and heuristic
rules into robust, patient-specific, user-friendly CDSSs. This approach and its corresponding software tool will
be tested within two clinical RT sites of lung and liver cancers, to demonstrate its versatility and highlight pertinent
human-computer factors and cancer specific issues.
Impact statement: Patient-specific big data are now available before and/or during RT courses, offering new
and untapped opportunities for personalized treatment. This study will overcome current shortcomings of
population-based approaches and data underuse in current RT practice by investigating and developing an
intelligent, computer-aided, user-centered, personalized CDSS and test its performance in rewarding but high-
risk RT scenarios. The approach is also applicable to other modern cancer regimens.
现代放射治疗(RT)的复杂环境包括来自患者的丰富组合的数据
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Issam M. El Naqa其他文献
Issam M. El Naqa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Issam M. El Naqa', 18)}}的其他基金
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 45.72万 - 项目类别:
Cerenkov Multi-Spectral Imaging (CMSI) for Adaptation and Real-Time Imaging in Radiotherapy
用于放射治疗中适应和实时成像的切伦科夫多光谱成像 (CMSI)
- 批准号:
10080509 - 财政年份:2020
- 资助金额:
$ 45.72万 - 项目类别:
Federated Learning for Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景组学分析进行放射治疗最佳决策的联邦学习
- 批准号:
10417829 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10669029 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10299634 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
9816658 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10250778 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10245972 - 财政年份:2018
- 资助金额:
$ 45.72万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
9594556 - 财政年份:2018
- 资助金额:
$ 45.72万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10470308 - 财政年份:2018
- 资助金额:
$ 45.72万 - 项目类别:
相似海外基金
Cultivating Diversity Awareness in Japanese Med Schools with a foreign Standardized Patient program
通过外国标准化患者计划培养日本医学院的多样性意识
- 批准号:
24K13361 - 财政年份:2024
- 资助金额:
$ 45.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
- 批准号:
EP/Y022092/1 - 财政年份:2024
- 资助金额:
$ 45.72万 - 项目类别:
Research Grant
Postdoctoral Fellowship: STEMEdIPRF: Examining how faculty awareness of systemic barriers and growth mindset influences students' belonging, self-efficacy, and success in STEM
博士后奖学金:STEMEdIPRF:研究教师对系统性障碍和成长心态的认识如何影响学生的归属感、自我效能和 STEM 成功
- 批准号:
2327319 - 财政年份:2024
- 资助金额:
$ 45.72万 - 项目类别:
Standard Grant
I-Corps: Virtual Reality Training Platform for Increasing Awareness of Unconscious Bias in Industry Decision-Making
I-Corps:虚拟现实培训平台,用于提高行业决策中无意识偏见的意识
- 批准号:
2402141 - 财政年份:2024
- 资助金额:
$ 45.72万 - 项目类别:
Standard Grant
DroneOps VR - Virtual Reality Training for Drone Hazard Awareness and Flight Planning
DroneOps VR - 无人机危险意识和飞行计划的虚拟现实培训
- 批准号:
10061885 - 财政年份:2023
- 资助金额:
$ 45.72万 - 项目类别:
Collaborative R&D
Evidence-Based Dialogue to Promote Sun Protection, Foster a Community of Concern and Increase Awareness for Skin Cancers in Canada.
在加拿大开展基于证据的对话,以促进防晒、培养关注社区并提高对皮肤癌的认识。
- 批准号:
485622 - 财政年份:2023
- 资助金额:
$ 45.72万 - 项目类别:
Miscellaneous Programs
The 'Long COVID Education and Awareness Hub': A digitally integrated resource for patients, caregivers, and health care providers
“长期新冠病毒教育和意识中心”:为患者、护理人员和医疗保健提供者提供的数字集成资源
- 批准号:
495218 - 财政年份:2023
- 资助金额:
$ 45.72万 - 项目类别:
A smartphone rip-detection tool to improve rip current awareness
智能手机撕裂检测工具,可提高撕裂电流感知能力
- 批准号:
LP220200780 - 财政年份:2023
- 资助金额:
$ 45.72万 - 项目类别:
Linkage Projects
Development of Informatics Materials with an Awareness of the High School-University connection and a Learning Support Environment for Data-Driven Instruction
开发具有高中与大学联系意识的信息学材料和数据驱动教学的学习支持环境
- 批准号:
23H01019 - 财政年份:2023
- 资助金额:
$ 45.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mindfulness according to the rNying ma School of Tibetan Buddhism: Philological Research on Its Scriptures, Exegesis, and Philosophy of Self-Awareness
藏传佛教宁玛派的正念:其经典、训诂和自我意识哲学的文字学研究
- 批准号:
23K00048 - 财政年份:2023
- 资助金额:
$ 45.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




