Artificial Intelligence for the Management of Colorectal Neoplasia Using Combined-Modality Spectroscopy and Enhanced Imaging
使用组合模态光谱和增强成像的人工智能治疗结直肠肿瘤
基本信息
- 批准号:10417015
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAdoptionAlgorithm DesignAmericanArtificial IntelligenceBenchmarkingBenignBiophotonicsBiopsyBostonCalibrationClinicalClinical ResearchColonic PolypsColonoscopyColorectal NeoplasmsColorectal PolypComputer AssistedComputer ModelsComputer softwareComputer-Assisted DiagnosisComputersCost SavingsDataDiagnosisElastic scattering spectroscopyEndoscopesEndoscopyEnsureEnvironmentExcisionExplosionFeedbackFluorescenceForcepGastrointestinal EndoscopyGuidelinesHealthcareHealthcare SystemsHistologyHistopathologyImageImage AnalysisImage EnhancementIn SituJamaicaLesionLightMachine LearningMalignant - descriptorMeasurementMethodologyMethodsModalityMulti-site clinical studyOpticsPerformancePolypectomyPolypsPrecancerous PolypProceduresProfessional OrganizationsReportingReproducibilityResearchRiskSiteSocietiesSourceSpectrum AnalysisStandardizationSystemTechnologyTimeTissuesVariantWorkartificial intelligence algorithmbasecancer riskchromoscopycolorectal cancer preventioncostdesignexperienceimprovedinstrumentinstrumentationmicroendoscopyminiaturizenext generationnovelprimary endpointprospective testprototypesecondary endpointskillstooluser-friendly
项目摘要
Objectives: The overarching objective of this proposal is to develop, validate, and deploy an artificial
intelligence (AI)-based low-cost platform to make endoscopic prevention of colorectal cancer (CRC) more
efficient. We seek to leverage our work in spectroscopic biopsy tools and automated endoscopic imaging
interpretation to create an accurate and widely-adoptable, real-time histology (RTH) platform based on
combined optical modalities and machine learning. At present, colonoscopic CRC prevention hinges on
the complete removal and histopathological assessment of all polyps. This practice results in the removal
of large numbers of polyps that have negligible malignant potential. As such, there is a widely-recognized
need for simple, rapid, and low-cost methods for “smart” polyp assessment in real time to decrease biopsy
costs and risks. To this end, major professional societies, led by The American Society for Gastrointestinal
Endoscopy (ASGE), have endorsed the purely optical management of diminutive polyps and have put forth
guidelines and acceptable performance thresholds (i.e. the PIVI statements) for eventual adoption. The
past decade has seen an explosion in biophotonic technologies toward diagnosing and treating colorectal
neoplasia more precisely. While several PIVI thresholds for diminutive colonic polyps have been met,
prospective testing in non-academic settings has fallen short due to the barriers of operator skill and
experience. Recent advances in machine learning/artificial intelligence, and their application to endoscopic
imaging, have shown promise for automating RTH to overcome operator factors. Such capability would
finally open the door to widespread adoption of cost-saving resect-and-discard and leave-behind
paradigms for diminutive polyps. On this front, we will build on our work using elastic scattering
spectroscopy (ESS) biopsy tools, which has shown great promise for RTH, combining it with computer-
assisted diagnosis (CAD) of endoscopic images. We hypothesize that the novel combination of these
complementary AI based technologies will lead to a highly-accurate, minimally-disruptive, and widely-
deployable approach for RTH of colorectal polyps. The specific aims for the present project are: 1. Develop
AI models for computer assisted RTH based on spectroscopy and endoscopic images; 2. Implement
system enhancements and tool design for multisite deployment; 3. Perform a multisite clinical study using
AI-based RTH based on the combination of ESS and CAD of endoscopic images.
Methodology: First, we will conduct a clinical study at VA Boston in which we will collect ESS
measurements and endoscopic images of polyps at colonoscopy. We will use this paired data, correlated
to clinical features and histopathology to design and validate AI algorithms for computer assisted RTH of
colorectal polyps (including serrated lesions) that utilize both sources of optical information. Concurrently,
we will prototype and build the next-generation ESS system, based on a new design that dramatically
reduces the hardware footprint and cost. We will also design and prototype reprocessable ESS probes for
integration into standard polypectomy snares. Finally, we will conduct a multisite clinical study involving
three other VA facilities where the work described above will be deployed. The primary endpoint of this
aim will be to evaluate the performance of ESS and CAD of endoscopic images separately and in
combination toward PIVI thresholds. As secondary endpoints, we will use the clinical study to evaluate and
improve our clinical systems.
目标:此建议的首要目标是开发、验证和部署人工智能
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SATISH K SINGH其他文献
SATISH K SINGH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SATISH K SINGH', 18)}}的其他基金
CMA: Marker-assisted prevention and risk stratification (MAPRS): Artificial Intelligence Endoscopy for Colorectal Cancer Prevention (CMA1)
CMA:标记物辅助预防和风险分层 (MAPRS):人工智能内窥镜预防结直肠癌 (CMA1)
- 批准号:
10436776 - 财政年份:2019
- 资助金额:
-- - 项目类别:
CMA: Marker-assisted prevention and risk stratification (MAPRS): Artificial Intelligence Endoscopy for Colorectal Cancer Prevention (CMA1)
CMA:标记物辅助预防和风险分层 (MAPRS):人工智能内窥镜预防结直肠癌 (CMA1)
- 批准号:
10084234 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Optical Spectroscopy in the Management of Colorectal Neoplasia
光谱学在结直肠肿瘤治疗中的应用
- 批准号:
8922125 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Artificial Intelligence for the Management of Colorectal Neoplasia Using Combined-Modality Spectroscopy and Enhanced Imaging
使用组合模态光谱和增强成像的人工智能治疗结直肠肿瘤
- 批准号:
10578735 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Optical Spectroscopy in the Management of Colorectal Neoplasia
光谱学在结直肠肿瘤治疗中的应用
- 批准号:
9060752 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Artificial Intelligence for the Management of Colorectal Neoplasia Using Combined-Modality Spectroscopy and Enhanced Imaging
使用组合模态光谱和增强成像的人工智能治疗结直肠肿瘤
- 批准号:
9889313 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Optical Sensing of Dysplasia and Aneuploidy in Upper GI Endoscopy
上消化道内窥镜检查中不典型增生和非整倍体的光学传感
- 批准号:
8698361 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Optical Sensing of Dysplasia and Aneuploidy in Upper GI Endoscopy
上消化道内窥镜检查中不典型增生和非整倍体的光学传感
- 批准号:
8392965 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Optical Sensing of Dysplasia and Aneuploidy in Upper GI Endoscopy
上消化道内窥镜检查中不典型增生和非整倍体的光学传感
- 批准号:
8044327 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Optical Sensing of Dysplasia and Aneuploidy in Upper GI Endoscopy
上消化道内窥镜检查中不典型增生和非整倍体的光学传感
- 批准号:
8250824 - 财政年份:2011
- 资助金额:
-- - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
-- - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




