CMA: Marker-assisted prevention and risk stratification (MAPRS): Artificial Intelligence Endoscopy for Colorectal Cancer Prevention (CMA1)
CMA:标记物辅助预防和风险分层 (MAPRS):人工智能内窥镜预防结直肠癌 (CMA1)
基本信息
- 批准号:10084234
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptionAlgorithmsAmericanAntineoplastic AgentsArtificial IntelligenceAwardBenchmarkingBiologicalBiological MarkersBiophotonicsBloodClassificationClinicalClinical DataColonoscopesColonoscopyColorectal CancerComputer AssistedComputer ModelsComputer-Assisted DiagnosisComputersCost SavingsDataData SetDetectionDevelopmentDiagnosisDistantEarly DiagnosisEndoscopesEndoscopyEnsureExcisionExplosionGastrointestinal EndoscopyGenomicsHealthcareHistologicHistologyImageImage EnhancementInfrastructureInterventionKnowledgeLabelLinkMachine LearningMalignant NeoplasmsMethodsModelingModernizationMucinsNeoplasmsNeoplastic PolypOpticsPathway interactionsPatientsPerformancePharmaceutical PreparationsPolypsPopulationPrecancerous PolypPrecision therapeuticsPreventionProceduresPrognosisRecurrenceReportingResearchResearch PersonnelRiskSamplingSiteSocietiesTechnologyTestingTherapeuticTimeTissuesTrainingTranslational ResearchTumor-DerivedVeteransWorkalgorithm developmentbasebiomarker developmentbiomarker panelcancer riskchromoscopyclassification algorithmclinical biomarkersclinical data repositoryclinical imagingclinical practicecolon cancer patientscolorectal cancer preventioncolorectal cancer riskcolorectal cancer screeningcolorectal cancer treatmentcombinatorialcostdata repositorydesigndrug response predictionevidence baseexperiencefallsimage archival systemimprovedinnovationmeetingsnovel markerpersonalized managementpredictive modelingpreservationpressurerandomized trialrepositoryresponserisk stratificationscreeningskillsstemsuccesssynergismtooltreatment strategytumorvirtual
项目摘要
This collaborative merit review application (CMA) aims to advance the precision management of
cancers, specifically marker-assisted prevention and risk stratification (MAPRS) of colorectal
cancers (CRCs). The third most common cancer in the USA, CRC accounts for nearly 10% of all
cancers among Veterans. MAPRS stems from a group of investigators from the VA Colorectal
Cancer Cellgenomics Collaborative (VA4C), created with the support of a VA Field-based Meeting
Award. The VA4C aims to advance basic/translational research on the prevention, early detection,
diagnosis, prognosis and treatment of CRCs. The proposed CMAs aim to disrupt these limitations
and significantly advance CRC prevention, detection, risk stratification and precision treatment by
advancing MAPRS. MAPRS-CMA aims to: CMA1) develop artificial intelligence-enhanced
endoscopy for colorectal cancer prevention; CMA2) examine mucin-based markers to improve
endoscopic detection, resection, histological classification and surveillance of neoplastic polyps;
CMA3) validate tissue and blood-based combinatorial biomarker panels derived from functional
pathway-specific studies to improve risk stratification; and CMA4) examine the potential of
cellgenomic drug-response profiling for precision CRC treatment.
The main objective of our project, CMA1, is to create and establish within the VA an infrastructure
to enable us to develop, validate, and deploy machine learning (ML) /artificial intelligence (AI)
models to enhance endoscopy. The past decade has seen an explosion in biophotonic technologies
to more precisely diagnose and treat colonic neoplasia. The result is, however, increasingly
information-dense imaging to interpret and interact with during procedures. Not surprisingly,
technological enhancement of practice has remained restricted to experts at academic centers. Our
hypothesis is that reliable real-time polyp histology can be enabled for any operator by computer-
assisted diagnosis using ML/AI. This capability would finally open the door to widespread adoption
of cost-saving, ASGE-sanctioned resect-and-discard and leave-behind paradigms for diminutive
polyps. Thus, the specific aims of this project are: Aim 1: To create a large, scalable labeled
endoscopic databank for ML/AI research comprised of clinical image data uploaded from multiple
VA centers. Aim 2: To utilize this image repository to develop and validate ML/AI models that
enable real-time histology of polyps as well as Aim 3: To develop ML models for computer assisted
polyp detection in conjunction with mucin-based fluorescent biomarkers for widefield detection. Aim
4: Use ML/AI to help predict CRC drug response based on combined clinical factors and
cellgenomic data.
这一协作式绩效评估应用程序(CMA)旨在推进以下方面的精确管理:
癌症,特别是结直肠癌的标记物辅助预防和风险分层(MAPRS)
癌症(CRC)。CRC是美国第三大常见癌症,占所有癌症的近10%。
退伍军人中的癌症MAPRS源于一组来自VA结肠直肠的研究人员
癌症细胞基因组学协作(VA 4C),在VA现场会议的支持下创建
奖VA 4C旨在推进预防,早期发现,
CRCs的诊断、预后和治疗。拟议的CMA旨在打破这些限制
显著推进CRC预防、检测、风险分层和精准治疗,
推进MAPRS。MAPRS-CMA旨在:CMA 1)开发人工智能增强型
结肠直肠癌预防内镜检查; CMA 2)检查基于粘蛋白的标记物,以改善
内镜下肿瘤性息肉的检测、切除、组织学分类和监测;
CMA 3)验证源自功能性生物标志物的基于组织和血液的组合生物标志物组
特定途径研究,以改善风险分层;和CMA 4)检查
用于精确CRC治疗的细胞基因组药物反应谱分析。
我们的项目CMA 1的主要目标是在VA内创建和建立基础设施
使我们能够开发、验证和部署机器学习(ML)/人工智能(AI)
增强内窥镜检查的模型。在过去的十年里,生物光子技术出现了爆炸式的发展
以更精确地诊断和治疗结肠肿瘤。然而,结果是,
信息密集的成像,以解释和互动过程中。毫不奇怪的是,
实践的技术改进仍然局限于学术中心的专家。我们
假设任何操作者都可以通过计算机进行可靠实时息肉组织学检查-
使用ML/AI进行辅助诊断。这种能力最终将为广泛采用打开大门
节省成本,ASGE批准的切除和丢弃和遗留模式,
息肉因此,该项目的具体目标是:目标1:创建一个大型的,可扩展的标签
用于ML/AI研究的内窥镜数据库,包括从多个
退伍军人中心。目标2:利用这个图像存储库开发和验证ML/AI模型,
实现息肉的实时组织学以及目标3:开发用于计算机辅助的ML模型
息肉检测结合基于粘蛋白的荧光生物标记物用于宽视野检测。目的
4:使用ML/AI来帮助预测CRC药物反应,基于组合的临床因素,
细胞基因组数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SATISH K SINGH其他文献
SATISH K SINGH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SATISH K SINGH', 18)}}的其他基金
CMA: Marker-assisted prevention and risk stratification (MAPRS): Artificial Intelligence Endoscopy for Colorectal Cancer Prevention (CMA1)
CMA:标记物辅助预防和风险分层 (MAPRS):人工智能内窥镜预防结直肠癌 (CMA1)
- 批准号:
10436776 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Optical Spectroscopy in the Management of Colorectal Neoplasia
光谱学在结直肠肿瘤治疗中的应用
- 批准号:
8922125 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Artificial Intelligence for the Management of Colorectal Neoplasia Using Combined-Modality Spectroscopy and Enhanced Imaging
使用组合模态光谱和增强成像的人工智能治疗结直肠肿瘤
- 批准号:
10417015 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Artificial Intelligence for the Management of Colorectal Neoplasia Using Combined-Modality Spectroscopy and Enhanced Imaging
使用组合模态光谱和增强成像的人工智能治疗结直肠肿瘤
- 批准号:
10578735 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Optical Spectroscopy in the Management of Colorectal Neoplasia
光谱学在结直肠肿瘤治疗中的应用
- 批准号:
9060752 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Artificial Intelligence for the Management of Colorectal Neoplasia Using Combined-Modality Spectroscopy and Enhanced Imaging
使用组合模态光谱和增强成像的人工智能治疗结直肠肿瘤
- 批准号:
9889313 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Optical Sensing of Dysplasia and Aneuploidy in Upper GI Endoscopy
上消化道内窥镜检查中不典型增生和非整倍体的光学传感
- 批准号:
8698361 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Optical Sensing of Dysplasia and Aneuploidy in Upper GI Endoscopy
上消化道内窥镜检查中不典型增生和非整倍体的光学传感
- 批准号:
8392965 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Optical Sensing of Dysplasia and Aneuploidy in Upper GI Endoscopy
上消化道内窥镜检查中不典型增生和非整倍体的光学传感
- 批准号:
8044327 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Optical Sensing of Dysplasia and Aneuploidy in Upper GI Endoscopy
上消化道内窥镜检查中不典型增生和非整倍体的光学传感
- 批准号:
8250824 - 财政年份:2011
- 资助金额:
-- - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant