Cardiovascular drug target, TRPV2
心血管药物靶点TRPV2
基本信息
- 批准号:10420467
- 负责人:
- 金额:$ 43.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AgonistAnimal ModelBindingBiological AssayCardiac MyocytesCardiovascular AgentsCardiovascular PhysiologyCardiovascular systemCationsCellular AssayCellular MembraneClinicalClinical ResearchComplementCryoelectron MicroscopyCultured CellsDefectDevelopmentDiabetes MellitusDiseaseDrug TargetingDyesElectrophysiology (science)EngineeringEnzymesFaceFamilyFutureGoalsIon ChannelIon Channel ProteinKnock-outLigandsLipidsMalignant NeoplasmsMeasuresMechanical StressMediatingMembraneMonitorMuscular DystrophiesMutagenesisMutationPathologicPharmaceutical PreparationsPhenotypePhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhosphoric Monoester HydrolasesPhosphotransferasesPhysiologyPlayProcessPropertyProteinsRecombinantsRegulationReportingRoleSpecificityStructureSymptomsTRPV channelTestingTherapeuticVesicleantagonistbasecardiovascular healthdesignexperimental studyextracellularinhibitormechanical stimulusmutantnanodisknovel therapeuticspatch clampreconstitutionresponsevoltage
项目摘要
The cation channel TRPV2 is important in development and function of the cardiovascular system. Multiple
studies suggest it is gated in response to mechanical stimulus, but the mechanism appears to be indirect and
is not yet known. Drugs targeting either activation or inhibition of TRPV2 have been reported to have beneficial
effects on pathological cardiovascular symptoms in both animal models and clinical studies, but the available
drugs have poor specificity and potency. The goal of this project is to develop a better understanding of the
structural and cellular basis of TRPV2 regulation, and to begin the process of developing more specific and
efficacious inhibitors and activators. Specific Aim 1 is to determine the effects of phosphoinositides and
mechanical stress on TRPV2 activity in a purified and reconstituted state. Phosphoinositide composition will be
manipulated and channel activity with and without added agonists and inhibitors, or in response to mechanical
stimulus, will be measured using Ca2+-indicator dyes or with patch-clamp electrophysiology. These
experiments will test the hypothesis that TRPV2 is a constitutively active channel and subject to negative
regulation by phosphatidylinositol (4,5) bisphosphate (PIP2), as well as the counter hypotheses that PIP2 is
stimulatory or alters channel selectivity or that effects of phosphoinositides are indirect. They will also test the
hypothesis that TRPV2 is directly mechanosensitive. Specific Aim 2 is to determine the effects of
phosphoinositides and mechanical stress on TRPV2 activity in the context of cellular membranes. TRPV2 will
be expressed in cultured cells and assayed using Ca2+-flux assays and patch clamp experiments. Expression
of recombinant enzymes engineered to respond to extracellular ligands, or to membrane voltage, as well as
fluorescently tagged phosphoinositide binding domains and inhibitors, will be used to manipulate and monitor
phosphoinositides on the cytoplasmic face of the membrane. These experiments will test the hypothesis that
TRPV2 is regulated by intracellular phosphoinositides and membrane tension in a cellular context. Specific
Aim 3: Determine the structural basis for regulation of TRPV2. The structure of TRPV2 in lipid nanodics will be
determined in the presence of phosphoinositides as well as agonists and inhibitors using cryo-electron
microscopy. Mutagenesis experiments will target residues proposed to play important roles in regulation by
phosphoinositides or other effectors. Mutations will be tested for their effects on function and structure. These
experiments will further test the hypothesis that direct interactions mediate the effects of these regulatory
molecules and identify the structural basis for those which do so. Accomplishment of these aims will make a
major contribution to our understanding of the general principles governing the regulation of ion channels of the
TRPV family, clarify the mechanistic basis for the roles of TRPV2 in normal physiology and disease, and help
to guide future therapeutic efforts relying on TRPV2 regulation as a target.
阳离子通道TRPV2在心血管系统的发育和功能中起重要作用。多重
研究表明,它是对机械刺激的反应,但其机制似乎是间接的和
目前还不清楚。据报道,针对TRPV2激活或抑制的药物具有
在动物模型和临床研究中对病理性心血管症状的影响,但可用的
药物的特异性和效力都很差。这个项目的目标是更好地了解
TRPV2调控的结构和细胞基础,并开始开发更具体和
有效的抑制剂和激活剂。具体目标1是确定磷脂酰肌醇和
机械应力对纯化和重组状态下TRPV2活性的影响。磷脂酰肌醇的组成将是
在有或没有添加激动剂和抑制剂的情况下,或在对机械刺激的反应中,操纵和引导活性
刺激,将使用钙离子指示剂染料或膜片钳电生理测量。这些
实验将检验这样的假设,即TRPV2是一个结构性活跃的通道,并受到负值的影响
磷脂酰肌醇(4,5)二磷酸(PIP2)的调节,以及PIP2是
刺激或改变通道选择性,或肌醇磷脂的作用是间接的。他们还将测试
假设TRPV2是直接机械敏感的。具体目标2是确定
肌醇磷脂和机械应力对细胞膜中TRPV2活性的影响。TRPV2将
在培养的细胞中表达,并通过钙离子通量分析和膜片钳实验进行检测。表达式
重组酶被设计成对细胞外配体或膜电压以及
荧光标记的磷脂酰肌醇结合结构域和抑制物将用于操纵和监测
膜的细胞质表面有磷脂酰肌醇。这些实验将检验这一假设
TRPV2在细胞内受磷脂酰肌醇和膜张力的调节。特定的
目的3:确定TRPV2调控的结构基础。脂类纳米粒中TRPV2的结构将是
用冷冻电子在有磷脂酰肌醇以及激动剂和抑制剂存在的情况下测定
显微镜。突变实验将针对被认为在调控中发挥重要作用的残基
磷脂酰肌醇或其他效应物。突变将被测试其对功能和结构的影响。这些
实验将进一步检验这样的假设,即直接相互作用调节这些调节的效果。
并确定那些这样做的分子的结构基础。这些目标的实现将使
对我们理解离子通道调节的一般原则有重大贡献。
TRPV家族,阐明TRPV2在正常生理和疾病中作用的机制基础,并有助于
以TRPV2调控为靶点,指导未来的治疗努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THEODORE G WENSEL其他文献
THEODORE G WENSEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THEODORE G WENSEL', 18)}}的其他基金
REGULATION AND FUNCTION OF RETINAL PHOSPHOINOSITIDES
视网膜磷脂的调节和功能
- 批准号:
10441540 - 财政年份:2020
- 资助金额:
$ 43.75万 - 项目类别:
REGULATION AND FUNCTION OF RETINAL PHOSPHOINOSITIDES
视网膜磷脂的调节和功能
- 批准号:
10653841 - 财政年份:2020
- 资助金额:
$ 43.75万 - 项目类别:
Core C: Research Experience and Training Coordination Core (RETCC)
核心 C:研究经验和培训协调核心 (RETCC)
- 批准号:
10116388 - 财政年份:2020
- 资助金额:
$ 43.75万 - 项目类别:
REGULATION AND FUNCTION OF RETINAL PHOSPHOINOSITIDES
视网膜磷脂的调节和功能
- 批准号:
10256049 - 财政年份:2020
- 资助金额:
$ 43.75万 - 项目类别:
Core C: Research Experience and Training Coordination Core (RETCC)
核心 C:研究经验和培训协调核心 (RETCC)
- 批准号:
10559680 - 财政年份:2020
- 资助金额:
$ 43.75万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 43.75万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 43.75万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 43.75万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 43.75万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 43.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 43.75万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 43.75万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 43.75万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 43.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 43.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




