Cardiovascular drug target, TRPV2
心血管药物靶点TRPV2
基本信息
- 批准号:10672922
- 负责人:
- 金额:$ 43.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AgonistAnimal ModelBindingBiological AssayCardiac MyocytesCardiovascular AgentsCardiovascular PhysiologyCardiovascular systemCationsCellular MembraneClinicalClinical ResearchComplementCryoelectron MicroscopyCultured CellsCytoplasmDefectDevelopmentDiabetes MellitusDiseaseDrug TargetingDyesElectrophysiology (science)EngineeringEnzymesFaceFamilyFutureGoalsIon ChannelIon Channel ProteinKnock-outLigandsLipidsMalignant NeoplasmsMeasuresMechanical StressMediatingMembraneMonitorMuscular DystrophiesMutagenesisMutationPathologicPharmaceutical PreparationsPhenotypePhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhosphoric Monoester HydrolasesPhosphotransferasesPhysiologyPlayProcessPropertyProteinsRecombinantsRegulationReportingRoleSpecificityStructureSymptomsTRPV channelTestingTherapeuticVesicleantagonistcardiovascular healthdesignexperimental studyextracellularinhibitormechanical stimulusmutantnanodisknovel therapeuticspatch clampprotein reconstitutionreconstitutionresponsevoltage
项目摘要
The cation channel TRPV2 is important in development and function of the cardiovascular system. Multiple
studies suggest it is gated in response to mechanical stimulus, but the mechanism appears to be indirect and
is not yet known. Drugs targeting either activation or inhibition of TRPV2 have been reported to have beneficial
effects on pathological cardiovascular symptoms in both animal models and clinical studies, but the available
drugs have poor specificity and potency. The goal of this project is to develop a better understanding of the
structural and cellular basis of TRPV2 regulation, and to begin the process of developing more specific and
efficacious inhibitors and activators. Specific Aim 1 is to determine the effects of phosphoinositides and
mechanical stress on TRPV2 activity in a purified and reconstituted state. Phosphoinositide composition will be
manipulated and channel activity with and without added agonists and inhibitors, or in response to mechanical
stimulus, will be measured using Ca2+-indicator dyes or with patch-clamp electrophysiology. These
experiments will test the hypothesis that TRPV2 is a constitutively active channel and subject to negative
regulation by phosphatidylinositol (4,5) bisphosphate (PIP2), as well as the counter hypotheses that PIP2 is
stimulatory or alters channel selectivity or that effects of phosphoinositides are indirect. They will also test the
hypothesis that TRPV2 is directly mechanosensitive. Specific Aim 2 is to determine the effects of
phosphoinositides and mechanical stress on TRPV2 activity in the context of cellular membranes. TRPV2 will
be expressed in cultured cells and assayed using Ca2+-flux assays and patch clamp experiments. Expression
of recombinant enzymes engineered to respond to extracellular ligands, or to membrane voltage, as well as
fluorescently tagged phosphoinositide binding domains and inhibitors, will be used to manipulate and monitor
phosphoinositides on the cytoplasmic face of the membrane. These experiments will test the hypothesis that
TRPV2 is regulated by intracellular phosphoinositides and membrane tension in a cellular context. Specific
Aim 3: Determine the structural basis for regulation of TRPV2. The structure of TRPV2 in lipid nanodics will be
determined in the presence of phosphoinositides as well as agonists and inhibitors using cryo-electron
microscopy. Mutagenesis experiments will target residues proposed to play important roles in regulation by
phosphoinositides or other effectors. Mutations will be tested for their effects on function and structure. These
experiments will further test the hypothesis that direct interactions mediate the effects of these regulatory
molecules and identify the structural basis for those which do so. Accomplishment of these aims will make a
major contribution to our understanding of the general principles governing the regulation of ion channels of the
TRPV family, clarify the mechanistic basis for the roles of TRPV2 in normal physiology and disease, and help
to guide future therapeutic efforts relying on TRPV2 regulation as a target.
阳离子通道TRPV2在心血管系统的发育和功能中是重要的。多
研究表明,它是门控响应机械刺激,但机制似乎是间接的,
目前还不清楚。据报道,靶向TRPV2的激活或抑制的药物具有有益的作用。
在动物模型和临床研究中,
药物的特异性和效力都很差。本项目的目标是更好地了解
TRPV2调节的结构和细胞基础,并开始开发更特异性和
有效的抑制剂和活化剂。具体目标1是确定磷酸肌醇的作用,
机械应力对纯化和重构状态下TRPV2活性的影响。磷酸肌醇组合物将是
操纵和通道活性与和不添加激动剂和抑制剂,或响应机械
刺激,将使用Ca2+指示剂染料或膜片钳电生理学测量。这些
实验将检验TRPV2是组成性活性通道并且受到负性抑制的假设。
磷脂酰肌醇(4,5)二磷酸(PIP2)的调节,以及相反的假设,PIP2是
刺激或改变通道选择性或磷酸肌醇作用是间接的。他们还将测试
假设TRPV2是直接机械敏感的。具体目标2是确定
磷酸肌醇和机械应力对TRPV2活性的影响。TRPV2将
在培养的细胞中表达,并使用Ca2+通量测定和膜片钳实验进行测定。表达
的重组酶工程响应细胞外配体,或膜电压,以及
荧光标记的磷酸肌醇结合域和抑制剂,将用于操纵和监测
在膜的细胞质面上的磷酸肌醇。这些实验将检验这样一个假设,
TRPV2在细胞环境中受细胞内磷酸肌醇和膜张力调节。具体
目的3:确定TRPV2调控的结构基础。TRPV2在脂质纳米材料中的结构将是
在存在磷酸肌醇以及激动剂和抑制剂的情况下,使用冷冻电子
显微镜诱变实验将靶向被认为在调节中起重要作用的残基,
磷酸肌醇或其它效应物。将测试突变对功能和结构的影响。这些
实验将进一步检验这一假设,即直接相互作用介导这些调节的影响。
分子,并确定那些这样做的结构基础。这些目标的实现将使
主要贡献,我们了解的一般原则,管理离子通道的调节,
TRPV家族,阐明TRPV 2在正常生理和疾病中作用的机制基础,并帮助
以指导未来依赖TRPV2调节作为靶点的治疗努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THEODORE G WENSEL其他文献
THEODORE G WENSEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THEODORE G WENSEL', 18)}}的其他基金
REGULATION AND FUNCTION OF RETINAL PHOSPHOINOSITIDES
视网膜磷脂的调节和功能
- 批准号:
10441540 - 财政年份:2020
- 资助金额:
$ 43.18万 - 项目类别:
REGULATION AND FUNCTION OF RETINAL PHOSPHOINOSITIDES
视网膜磷脂的调节和功能
- 批准号:
10653841 - 财政年份:2020
- 资助金额:
$ 43.18万 - 项目类别:
Core C: Research Experience and Training Coordination Core (RETCC)
核心 C:研究经验和培训协调核心 (RETCC)
- 批准号:
10116388 - 财政年份:2020
- 资助金额:
$ 43.18万 - 项目类别:
REGULATION AND FUNCTION OF RETINAL PHOSPHOINOSITIDES
视网膜磷脂的调节和功能
- 批准号:
10256049 - 财政年份:2020
- 资助金额:
$ 43.18万 - 项目类别:
Core C: Research Experience and Training Coordination Core (RETCC)
核心 C:研究经验和培训协调核心 (RETCC)
- 批准号:
10559680 - 财政年份:2020
- 资助金额:
$ 43.18万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 43.18万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 43.18万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 43.18万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 43.18万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 43.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 43.18万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 43.18万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 43.18万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 43.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 43.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists