REGULATION AND FUNCTION OF RETINAL PHOSPHOINOSITIDES
视网膜磷脂的调节和功能
基本信息
- 批准号:10653841
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Age related macular degenerationAutomobile DrivingAutophagocytosisAutophagosomeBinding ProteinsCell LineCell SurvivalCell membraneCellsCellular MorphologyChargeDevelopmentDiabetic RetinopathyDiseaseEndocytosisEnzymesEventExocytosisGTP-Binding ProteinsGoalsHealthHumanKnock-outLightLipidsLysosomesMembraneModelingMolecularMusNerve DegenerationNeuronsPIK3CG genePathway interactionsPhagocytosisPhagosomesPhenotypePhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhosphotransferasesPhototransductionProcessProtein IsoformsProteinsPublishingRecyclingRegulationRetinaRetinal DegenerationRetinal DiseasesRetinitis PigmentosaRhodopsinRodRoleSignal TransductionStructure of retinal pigment epitheliumTestingTherapeutic InterventionTimeTransducinUp-RegulationVisioncell typecyclic-nucleotide gated ion channelsenvironmental stressorexperimental studyin vivonovel therapeutic interventionphosphatidylinositol 3-phosphatephosphatidylinositol 4-phosphatepreservationprotein transportrecruitresponseretinal neuronretinal rodstrafficking
项目摘要
The goal is to understand regulation of phosphoinositide synthesis, degradation and localization in the retina
and retinal pigmented epithelium (RPE), and to understand the role of phosphoinositides in retinal signaling,
development, health and disease. By illuminating molecular details of such processes as membrane trafficking,
autophagy, phagocytosis, endocytosis and exocytosis, this understanding can help us better understand how
these processes are disrupted in retinal disease and how therapeutic interventions could make use of them to
preserve vision. The specific aims are: 1. Determine the relationship between each step in the
phototransduction cascade and regulation of PI(3)P PI(4)P, and PI(4,5)P2 regulation in rods. Light,
independently of time-of-day, drives massive increases in the levels of inner segment phosphoinositides.
Preliminary results suggest the signal driving this increase is downstream of the phototransduction cascade,
and our published results demonstrate a critical role for the Class III PI-3-kinase, Vps34. It remains unclear
how light leads to upregulation of the activity of Vps34 or what drives PI(4,5)P2 increases. The following
hypotheses will be tested: A. Transducin activation by photoexcited rhodopsin is essential for the light-driven
increases. B. PDE6 activity is essential for light-driven increases. C. The cyclic nucleotide-gated channel is
essential for the increases. 2. Determine the role of PI(4)P-5 kinase activity in PIP2 (phosphatidylinositol-
(4,5)bisphosphate) regulation in the outer retina and the functional role there of PI(4,5)P2. We will
generate mice with inducible rod-cell- or RPE-cell-specific knockouts of the principal enzyme responsible for
synthesizing PI(4,5)P2 in neurons, PIP-5-kinaseγ, and determine the phenotype with respect to
phosphoinositide levels, cell morphology and survival, protein trafficking, endocytosis, phagocytosis and
autophagy. These experiments will test the following hypotheses: A. PI(4,5)P2 is primarily synthesized in rods
and RPE by the action of the PIP-5-kinaseγ isoform using ATP and PI(4)P as substrates; B. PI(4,5)P2
synthesis is essential for a range of membrane trafficking functions and cell viability. If needed, we will also test
the global knockouts of the α and β isoforms, which are viable, as well as double and triple. 3. Determine the
distinct phosphoinositide-regulated mechanisms of LC3 recruitment and lysosome fusion in
autophagy and phagocytosis. We have found deficiencies in the standard models of LC3 recruitment to
autophagosomes and phagosomes, so we will combine in vivo experiments with experiments with RPE cell
lines to determine which proteins are critical for LC3 recruitment in RPE cells and what sequence of events
leads to this key event in both pathways. We will also identify the PI(3)P binding proteins that are essential for
LC3 recruitment to phagosomes and those that are essential for lysosome fusion of both autophagosomes and
phagosomes.
目的是了解肌醇磷脂在视网膜中的合成、降解和定位的调节。
和视网膜色素上皮(RPE),并了解肌醇磷脂在视网膜信号中的作用,
发展、健康和疾病。通过阐明膜运输等过程的分子细节,
自噬、吞噬、内吞和胞吐,这种理解可以帮助我们更好地理解
这些过程在视网膜疾病中被破坏,以及治疗干预如何利用它们来
保护视力。具体目标是:1.确定各步骤之间的关系
光导级联反应及PI(3)P、PI(4)P和PI(4,5)P2的调控。灯,
独立于一天中的时间,推动内节段肌醇磷脂水平的大幅增加。
初步结果表明,驱动这种增加的信号位于光转导级联的下游,
我们发表的结果证明了III类PI-3-激酶Vps34的关键作用。目前仍不清楚
光如何导致Vps34活性上调或是什么驱动PI(4,5)P2增加。以下是
假设将被检验:a.光激发视紫红质激活的转导蛋白对于光驱动的
增加。B.PDE6的活性对于光驱动的增加是必不可少的。C.环核苷酸门控通道是
对于增长来说是必不可少的。2.确定PI(4)P-5激酶活性在PIP2(磷脂酰肌醇-2)中的作用
(4,5)二磷酸)在视网膜外的调节以及PI(4,5)P2在其中的功能作用。我们会
用可诱导的杆状细胞或RPE细胞特异性敲除负责
在神经元中合成PI(4,5)P2,PIP-5-激酶γ,并测定其表型
肌醇磷脂水平、细胞形态和存活率、蛋白质运输、内吞作用、吞噬作用和
自噬。这些实验将检验以下假设:A.Pi(4,5)P2主要是在杆状结构中合成的
和以三磷酸腺苷和PI(4)P为底物的PIP-5-激酶γ亚型的作用;B.PI(4,5)P2
合成对于一系列的膜转运功能和细胞活力是必不可少的。如果需要,我们还将测试
α和β亚型的全球敲除,这是可行的,以及双倍和三倍。3.确定
肌醇磷脂调节Lc3募集和溶酶体融合的不同机制
自噬和吞噬。我们发现立法会三级招聘的标准模式有不足之处。
自噬小体和吞噬小体,所以我们将把体内实验和RPE细胞实验结合起来
确定哪些蛋白质对RPE细胞中的LC3募集至关重要,以及什么序列的事件
在这两条道路上都会导致这一关键事件。我们还将确定PI(3)P结合蛋白,这些蛋白是
吞噬小体和自噬小体与溶酶体融合所必需的Lc3募集
吞噬小体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THEODORE G WENSEL其他文献
THEODORE G WENSEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THEODORE G WENSEL', 18)}}的其他基金
REGULATION AND FUNCTION OF RETINAL PHOSPHOINOSITIDES
视网膜磷脂的调节和功能
- 批准号:
10441540 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Core C: Research Experience and Training Coordination Core (RETCC)
核心 C:研究经验和培训协调核心 (RETCC)
- 批准号:
10116388 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
REGULATION AND FUNCTION OF RETINAL PHOSPHOINOSITIDES
视网膜磷脂的调节和功能
- 批准号:
10256049 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Core C: Research Experience and Training Coordination Core (RETCC)
核心 C:研究经验和培训协调核心 (RETCC)
- 批准号:
10559680 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




