The Neuroimaging Brain Chart Software Suite

神经影像脑图软件套件

基本信息

  • 批准号:
    10581015
  • 负责人:
  • 金额:
    $ 97.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-15 至 2028-03-31
  • 项目状态:
    未结题

项目摘要

This study proposes to refine, integrate and disseminate the NeuroImaging Brain Chart (NIBCh) software toolbox and machine learning (ML) model library, an ecosystem of software components enabling constructive integration, statistical harmonization, and ML-centric data analyses across studies. NIBCh enables large-scale analyses of multi-modal brain MRI data by mapping such data into a compact coordinate system of informative neuroimaging signatures implemented by our library of ML models. The axes of this coordinate system represent two types of information: 1) a variety of structural (sMRI and dMRI) and functional connectomic (rsfMRI) imaging derived phenotypes (IDPs), such as multi-scale brain parcelations and brain networks; 2) complex ML-based imaging signatures (ML-IDPs), which capture multi-variate imaging patterns that reflect the heterogeneity of brain aging, neurodegeneration, as well as of neuropsychiatic disorders and have been previously derived from carefully processed and curated data of over 65,000 individuals. Using our software toolboxes (Tbx), researchers will be able to map new data into NIBCh, and hence to use ML-IDP models trained in NIBCh, as well as perform statistical tests against NIBCh normative ranges and compare their results with those of other studies using the same Tbx. The software suite will include a set of containerized pre-processing and analysis pipelines, as well as statistical harmonization and ML inference toolboxes, which will be accessible via a standalone python front-end visualization, as cloud-based containers, and via a web-interface supported by our high-performance computing cluster. Several dissemination plans are discussed, including a github user community, tutorials at major technical and clinical meetings, and support of both standalone pipelines locally or on the cloud, and web-based access of harmonization and ML inference modules. The over-arching primary goal of our program is to provide the software tools that will allow users to contribute to an actively growing community-based dimensional neuroimaging system that will utilize machine learning models to provide rich, yet precise, compact, concise, and informative representations of brain structure, function and connectivity.
本研究提出对NIBCh (NeuroImaging Brain Chart)软件进行完善、整合和推广

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christos Davatzikos其他文献

Christos Davatzikos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christos Davatzikos', 18)}}的其他基金

Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
  • 批准号:
    10714834
  • 财政年份:
    2023
  • 资助金额:
    $ 97.73万
  • 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
  • 批准号:
    10625442
  • 财政年份:
    2022
  • 资助金额:
    $ 97.73万
  • 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
  • 批准号:
    10421222
  • 财政年份:
    2022
  • 资助金额:
    $ 97.73万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10696100
  • 财政年份:
    2020
  • 资助金额:
    $ 97.73万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10263220
  • 财政年份:
    2020
  • 资助金额:
    $ 97.73万
  • 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
  • 批准号:
    10825403
  • 财政年份:
    2020
  • 资助金额:
    $ 97.73万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10475286
  • 财政年份:
    2020
  • 资助金额:
    $ 97.73万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10028746
  • 财政年份:
    2020
  • 资助金额:
    $ 97.73万
  • 项目类别:
Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
  • 批准号:
    10839623
  • 财政年份:
    2017
  • 资助金额:
    $ 97.73万
  • 项目类别:
Biomedical Image Computing and Informatics Cluster
生物医学图像计算与信息学集群
  • 批准号:
    9273767
  • 财政年份:
    2017
  • 资助金额:
    $ 97.73万
  • 项目类别:

相似海外基金

Investigating HDAC3 phosphorylation as an epigenetic regulator of memory formation in the adult and aging brain
研究 HDAC3 磷酸化作为成人和衰老大脑记忆形成的表观遗传调节剂
  • 批准号:
    10752404
  • 财政年份:
    2023
  • 资助金额:
    $ 97.73万
  • 项目类别:
The Health of Aging Parents of Adult Children with Serious Conditions
患有严重疾病的成年子女的年迈父母的健康
  • 批准号:
    10660046
  • 财政年份:
    2023
  • 资助金额:
    $ 97.73万
  • 项目类别:
Understanding Longer-Living Older Adult Research: The Summer Program on Aging
了解长寿老年人研究:老龄化夏季项目
  • 批准号:
    476343
  • 财政年份:
    2022
  • 资助金额:
    $ 97.73万
  • 项目类别:
Role of sensory experience in the regulation of plasticity in the developing, adult and aging brain
感官体验在发育、成人和衰老大脑可塑性调节中的作用
  • 批准号:
    RGPIN-2019-04761
  • 财政年份:
    2022
  • 资助金额:
    $ 97.73万
  • 项目类别:
    Discovery Grants Program - Individual
Adult Cognitive and Neurobiological Indicators of Aging: Impact of Adversity and Social Support
成人衰老的认知和神经生物学指标:逆境和社会支持的影响
  • 批准号:
    10365348
  • 财政年份:
    2022
  • 资助金额:
    $ 97.73万
  • 项目类别:
Adult Cognitive and Neurobiological Indicators of Aging: Impact of Adversity and Social Support
成人衰老的认知和神经生物学指标:逆境和社会支持的影响
  • 批准号:
    10700796
  • 财政年份:
    2022
  • 资助金额:
    $ 97.73万
  • 项目类别:
Endogenous barcoding to determine complex dynamics of adult neurogenesis in aging and Alzheimer's disease
内源条形码确定衰老和阿尔茨海默病中成人神经发生的复杂动态
  • 批准号:
    10651861
  • 财政年份:
    2022
  • 资助金额:
    $ 97.73万
  • 项目类别:
Investigating the interface of epigenetics and metabolism underlying memory formation in the adult, aging, and AD brain
研究成人、衰老和 AD 大脑中记忆形成的表观遗传学和代谢界面
  • 批准号:
    10420533
  • 财政年份:
    2022
  • 资助金额:
    $ 97.73万
  • 项目类别:
Endogenous barcoding to determine complex dynamics of adult neurogenesis in aging and Alzheimer's disease
内源条形码确定衰老和阿尔茨海默病中成人神经发生的复杂动态
  • 批准号:
    10846200
  • 财政年份:
    2022
  • 资助金额:
    $ 97.73万
  • 项目类别:
THE DEVELOPMENT OF MECHANISM-BASED ADULT STEM CELL TREATMENTS TO COMBAT AGING PATHOLOGIES
开发基于机制的成人干细胞疗法来对抗衰老病理学
  • 批准号:
    10721544
  • 财政年份:
    2022
  • 资助金额:
    $ 97.73万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了