The Neuroimaging Brain Chart Software Suite
神经影像脑图软件套件
基本信息
- 批准号:10581015
- 负责人:
- 金额:$ 97.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-15 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAdultAgingArtificial IntelligenceAtlasesBackBrainClinicalCommunitiesComplexComputer softwareDataData AnalysesDetectionDevelopmentDiffusionDiffusion Magnetic Resonance ImagingDimensionsDiseaseEcosystemEducational workshopFunctional Magnetic Resonance ImagingGenomicsGoalsHeterogeneityHigh Performance ComputingImageIndividualInfrastructureInternetKnowledge DiscoveryLibrariesMachine LearningMapsMethodsModelingNerve DegenerationNeurodegenerative DisordersOnline SystemsPatternPersonsPhenotypeProcessPythonsResearchResearch PersonnelSoftware ToolsSourceStandardizationStructureSystemTestingTrainingVariantVisualVisualizationWorkaging brainanalysis pipelinebrain magnetic resonance imagingcloud basedcluster computingcombatdata sharingdeep learningdeep learning modelmachine learning methodmachine learning modelmeetingsmultimodalitynervous system disorderneuroimagingneuropsychiatric disordernovelprogramsstructural determinantstoolweb interfaceweb portal
项目摘要
This study proposes to refine, integrate and disseminate the NeuroImaging Brain Chart (NIBCh) software
toolbox and machine learning (ML) model library, an ecosystem of software components enabling
constructive integration, statistical harmonization, and ML-centric data analyses across studies. NIBCh
enables large-scale analyses of multi-modal brain MRI data by mapping such data into a compact coordinate
system of informative neuroimaging signatures implemented by our library of ML models. The axes of this
coordinate system represent two types of information: 1) a variety of structural (sMRI and dMRI) and
functional connectomic (rsfMRI) imaging derived phenotypes (IDPs), such as multi-scale brain parcelations
and brain networks; 2) complex ML-based imaging signatures (ML-IDPs), which capture multi-variate
imaging patterns that reflect the heterogeneity of brain aging, neurodegeneration, as well as of
neuropsychiatic disorders and have been previously derived from carefully processed and curated data of
over 65,000 individuals. Using our software toolboxes (Tbx), researchers will be able to map new data into
NIBCh, and hence to use ML-IDP models trained in NIBCh, as well as perform statistical tests against NIBCh
normative ranges and compare their results with those of other studies using the same Tbx. The software
suite will include a set of containerized pre-processing and analysis pipelines, as well as statistical
harmonization and ML inference toolboxes, which will be accessible via a standalone python front-end
visualization, as cloud-based containers, and via a web-interface supported by our high-performance
computing cluster. Several dissemination plans are discussed, including a github user community, tutorials
at major technical and clinical meetings, and support of both standalone pipelines locally or on the cloud,
and web-based access of harmonization and ML inference modules.
The over-arching primary goal of our program is to provide the software tools that will allow users to
contribute to an actively growing community-based dimensional neuroimaging system that will utilize
machine learning models to provide rich, yet precise, compact, concise, and informative representations of
brain structure, function and connectivity.
本研究旨在完善、整合和推广神经影像脑图(NIBCh)软件
工具箱和机器学习(ML)模型库,一个软件组件生态系统,
建设性的整合,统计协调和ML为中心的数据分析跨研究。NIBCh
通过将多模态脑MRI数据映射到紧凑的坐标中,
由我们的ML模型库实现的信息丰富的神经成像签名系统。这个的轴心
坐标系表示两种类型信息:1)各种结构(sMRI和dMRI),
功能性连接组学(rsfMRI)成像衍生的表型(IDP),例如多尺度脑包裹
2)复杂的基于ML的成像签名(ML-IDP),它捕获多变量
成像模式,反映了大脑老化,神经退行性变,以及
神经精神障碍,并已事先从仔细处理和策划的数据,
超过65,000人。使用我们的软件工具箱(Tbx),研究人员将能够将新数据映射到
NIBCh,并因此使用在NIBCh中训练的ML-IDP模型,以及针对NIBCh执行统计测试
正常范围,并将其结果与使用相同Tbx的其他研究的结果进行比较。软件
套件将包括一组容器化预处理和分析管道,以及统计
协调和ML推理工具箱,可通过独立的Python前端访问
可视化,作为基于云的容器,并通过我们的高性能
计算集群。讨论了几个传播计划,包括github用户社区,教程
在主要的技术和临床会议上,并支持本地或云上的独立管道,
以及基于Web的协调和ML推理模块的访问。
我们计划的首要目标是提供软件工具,使用户能够
有助于积极发展基于社区的多维神经成像系统,
机器学习模型,以提供丰富,但精确,紧凑,简洁和信息丰富的表示,
大脑结构、功能和连通性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Davatzikos其他文献
Christos Davatzikos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Davatzikos', 18)}}的其他基金
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
- 批准号:
10714834 - 财政年份:2023
- 资助金额:
$ 97.73万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10625442 - 财政年份:2022
- 资助金额:
$ 97.73万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10421222 - 财政年份:2022
- 资助金额:
$ 97.73万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10696100 - 财政年份:2020
- 资助金额:
$ 97.73万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10263220 - 财政年份:2020
- 资助金额:
$ 97.73万 - 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
- 批准号:
10825403 - 财政年份:2020
- 资助金额:
$ 97.73万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10475286 - 财政年份:2020
- 资助金额:
$ 97.73万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10028746 - 财政年份:2020
- 资助金额:
$ 97.73万 - 项目类别:
Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
- 批准号:
10839623 - 财政年份:2017
- 资助金额:
$ 97.73万 - 项目类别:
Biomedical Image Computing and Informatics Cluster
生物医学图像计算与信息学集群
- 批准号:
9273767 - 财政年份:2017
- 资助金额:
$ 97.73万 - 项目类别:
相似海外基金
Investigating HDAC3 phosphorylation as an epigenetic regulator of memory formation in the adult and aging brain
研究 HDAC3 磷酸化作为成人和衰老大脑记忆形成的表观遗传调节剂
- 批准号:
10752404 - 财政年份:2023
- 资助金额:
$ 97.73万 - 项目类别:
The Health of Aging Parents of Adult Children with Serious Conditions
患有严重疾病的成年子女的年迈父母的健康
- 批准号:
10660046 - 财政年份:2023
- 资助金额:
$ 97.73万 - 项目类别:
Understanding Longer-Living Older Adult Research: The Summer Program on Aging
了解长寿老年人研究:老龄化夏季项目
- 批准号:
476343 - 财政年份:2022
- 资助金额:
$ 97.73万 - 项目类别:
Role of sensory experience in the regulation of plasticity in the developing, adult and aging brain
感官体验在发育、成人和衰老大脑可塑性调节中的作用
- 批准号:
RGPIN-2019-04761 - 财政年份:2022
- 资助金额:
$ 97.73万 - 项目类别:
Discovery Grants Program - Individual
Adult Cognitive and Neurobiological Indicators of Aging: Impact of Adversity and Social Support
成人衰老的认知和神经生物学指标:逆境和社会支持的影响
- 批准号:
10365348 - 财政年份:2022
- 资助金额:
$ 97.73万 - 项目类别:
Adult Cognitive and Neurobiological Indicators of Aging: Impact of Adversity and Social Support
成人衰老的认知和神经生物学指标:逆境和社会支持的影响
- 批准号:
10700796 - 财政年份:2022
- 资助金额:
$ 97.73万 - 项目类别:
Endogenous barcoding to determine complex dynamics of adult neurogenesis in aging and Alzheimer's disease
内源条形码确定衰老和阿尔茨海默病中成人神经发生的复杂动态
- 批准号:
10651861 - 财政年份:2022
- 资助金额:
$ 97.73万 - 项目类别:
Investigating the interface of epigenetics and metabolism underlying memory formation in the adult, aging, and AD brain
研究成人、衰老和 AD 大脑中记忆形成的表观遗传学和代谢界面
- 批准号:
10420533 - 财政年份:2022
- 资助金额:
$ 97.73万 - 项目类别:
Endogenous barcoding to determine complex dynamics of adult neurogenesis in aging and Alzheimer's disease
内源条形码确定衰老和阿尔茨海默病中成人神经发生的复杂动态
- 批准号:
10846200 - 财政年份:2022
- 资助金额:
$ 97.73万 - 项目类别:
THE DEVELOPMENT OF MECHANISM-BASED ADULT STEM CELL TREATMENTS TO COMBAT AGING PATHOLOGIES
开发基于机制的成人干细胞疗法来对抗衰老病理学
- 批准号:
10721544 - 财政年份:2022
- 资助金额:
$ 97.73万 - 项目类别:














{{item.name}}会员




