Biomedical Image Computing and Informatics Cluster

生物医学图像计算与信息学集群

基本信息

  • 批准号:
    9273767
  • 负责人:
  • 金额:
    $ 194.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

Abstract The Biomedical Image Computing and Informatics Cluster (BICIC) will meet the rapidly growing needs of biomedical image computing research at Penn, and at the Center for Biomedical Image Computing in particular, and of the center's network of NIH-funded collaborating studies. Biomedical image computing faces several challenges. Increased algorithmic complexity demands computationally intensive computing and data mining of large collections of imaging, clinical and genetic data from growing patient populations is needed in order to discover biologically and clinically important relationships. These challenges underline the need for the advanced computing and storage facilities that the BICIC will provide. The proposed instrument represents an approximate 7-fold increase over the currently available resources, allowing both a more rapid execution of existing computerized analyses and providing the ability to explore methods that are currently infeasible with current equipment. The availability of this computing power in a single facility, instead of scattered resources of individual labs, will enable collaboration on algorithms, programming methods, datasets, and processing techniques that is not currently possible. The proposed server will provide a platform for developers and users of these sophisticated and demanding algorithms to push the envelope of biomedical image computing science to new levels. The proposed supercomputer will allow for high throughput analysis of scans, accelerating knowledge discovery and design of further analyses. The contribution of such a system to basic scientific research will be immense, as many scientific projects that are now infeasible, or which require computation measured in weeks or months, will produce results within minutes or days. The facility will encourage rapid development of complex image and connectomic analysis, pattern recognition, and data mining algorithms, often working on high- dimensional multi-parametric data, thereby allowing us to maximize the amount and accuracy of information gathered from biomedical images. Data mining of large databases and of complex data will expose new relationships between genotypes and phenotypes, and will potentially reveal subtle characteristics of certain pathologies that have clinical values. It will also aid Penn's strong focus on translational research in the field of medical imaging, which is currently limited by the lack of a sufficiently powerful computer system to facilitate the demanding imaging studies. The basic and clinical research that the proposed computational server will enable is expected to have a very significant clinical impact, underlining the importance of the project.
摘要 生物医学图像计算和信息学集群(BICIC)将满足快速增长的需求 生物医学图像计算研究的中心, 特别是,以及该中心的NIH资助的合作研究网络。生物医学图像 计算面临若干挑战。算法复杂性的增加需要计算 对大量的成像、临床和遗传数据进行密集计算和数据挖掘, 为了发现生物学和临床上重要的 关系。这些挑战凸显了对先进计算和存储设施的需求 BICIC将提供。拟议的文书比2000年增加了约7倍, 现有的资源,既可以更快地执行现有的计算机化 分析并提供探索目前不可行的方法的能力, 设备.这种计算能力在单个设施中的可用性,而不是分散的资源 将实现算法、编程方法、数据集和 这是目前不可能的技术。拟议的服务器将提供一个平台, 这些复杂而苛刻的算法的开发人员和用户, 生物医学图像计算科学的新水平。拟议中的超级计算机将允许高 扫描的吞吐量分析,加速知识发现和进一步分析的设计。的 这样一个系统对基础科研的贡献将是巨大的,因为许多科学项目 现在不可行的,或者需要数周或数月计算的,将产生 结果在几分钟或几天内。该设施将鼓励快速发展的复杂形象, 连接组学分析、模式识别和数据挖掘算法,通常工作在高- 多维多参数数据,从而使我们能够最大限度地提高数量和精度, 从生物医学图像中收集的信息。大型数据库和复杂数据的数据挖掘 将揭示基因型和表型之间的新关系,并可能揭示微妙的 具有临床价值的某些病理特征。这也将有助于宾夕法尼亚大学的强烈关注, 医学成像领域的转化研究,目前由于缺乏 足够强大的计算机系统,以促进苛刻的成像研究。基本及 临床研究,提出的计算服务器将使有望有一个非常 临床效果显著,突出了该项目的重要性。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Liver Tumor Segmentation Benchmark (LiTS).
  • DOI:
    10.1016/j.media.2022.102680
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Bilic, Patrick;Christ, Patrick;Li, Hongwei Bran;Vorontsov, Eugene;Ben-Cohen, Avi;Kaissis, Georgios;Szeskin, Adi;Jacobs, Colin;Mamani, Gabriel Efrain Humpire;Chartrand, Gabriel;Lohoefer, Fabian;Holch, Julian Walter;Sommer, Wieland;Hofmann, Felix;Hostettler, Alexandre;Lev-Cohain, Naama;Drozdzal, Michal;Amitai, Michal Marianne;Vivanti, Refael;Sosna, Jacob;Ezhov, Ivan;Sekuboyina, Anjany;Navarro, Fernando;Kofler, Florian;Paetzold, Johannes C.;Shit, Suprosanna;Hu, Xiaobin;Lipkova, Jana;Rempfler, Markus;Piraud, Marie;Kirschke, Jan;Wiestler, Benedikt;Zhang, Zhiheng;Huelsemeyer, Christian;Beetz, Marcel;Ettlinger, Florian;Antonelli, Michela;Bae, Woong;Bellver, Miriam;Bi, Lei;Chen, Hao;Chlebus, Grzegorz;Dam, Erik B.;Dou, Qi;Fu, Chi-Wing;Georgescu, Bogdan;Giro-I-Nieto, Xavier;Gruen, Felix;Han, Xu;Heng, Pheng-Ann;Hesser, Jurgen;Moltz, Jan Hendrik;Igel, Christian;Isensee, Fabian;Jaeger, Paul;Jia, Fucang;Kaluva, Krishna Chaitanya;Khened, Mahendra;Kim, Ildoo;Kim, Jae-Hun;Kim, Sungwoong;Kohl, Simon;Konopczynski, Tomasz;Kori, Avinash;Krishnamurthi, Ganapathy;Li, Fan;Li, Hongchao;Li, Junbo;Li, Xiaomeng;Lowengrub, John;Ma, Jun;Maier-Hein, Klaus;Maninis, Kevis-Kokitsi;Meine, Hans;Merhof, Dorit;Pai, Akshay;Perslev, Mathias;Petersen, Jens;Pont-Tuset, Jordi;Qi, Jin;Qi, Xiaojuan;Rippel, Oliver;Roth, Karsten;Sarasua, Ignacio;Schenk, Andrea;Shen, Zengming;Torres, Jordi;Wachinger, Christian;Wang, Chunliang;Weninger, Leon;Wu, Jianrong;Xu, Daguang;Yang, Xiaoping;Yu, Simon Chun-Ho;Yuan, Yading;Yue, Miao;Zhang, Liping;Cardoso, Jorge;Bakas, Spyridon;Braren, Rickmer;Heinemann, Volker;Pal, Christopher;Tang, An;Kadoury, Samuel;Soler, Luc;van Ginneken, Bram;Greenspan, Hayit;Joskowicz, Leo;Menze, Bjoern
  • 通讯作者:
    Menze, Bjoern
Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes.
  • DOI:
    10.1016/j.biopsych.2022.03.021
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
  • 通讯作者:
Radiomics and radiogenomics in pediatric neuro-oncology: A review.
  • DOI:
    10.1093/noajnl/vdac083
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
HiG2Vec: hierarchical representations of Gene Ontology and genes in the Poincaré ball.
Interpretable machine learning for predicting pathologic complete response in patients treated with chemoradiation therapy for rectal adenocarcinoma.
  • DOI:
    10.3389/frai.2022.1059033
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Wang, Du;Lee, Sang Ho;Geng, Huaizhi;Zhong, Haoyu;Plastaras, John;Wojcieszynski, Andrzej;Caruana, Richard;Xiao, Ying
  • 通讯作者:
    Xiao, Ying
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christos Davatzikos其他文献

Christos Davatzikos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christos Davatzikos', 18)}}的其他基金

Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
  • 批准号:
    10714834
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
The Neuroimaging Brain Chart Software Suite
神经影像脑图软件套件
  • 批准号:
    10581015
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
  • 批准号:
    10625442
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
  • 批准号:
    10421222
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10696100
  • 财政年份:
    2020
  • 资助金额:
    $ 194.58万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10263220
  • 财政年份:
    2020
  • 资助金额:
    $ 194.58万
  • 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
  • 批准号:
    10825403
  • 财政年份:
    2020
  • 资助金额:
    $ 194.58万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10475286
  • 财政年份:
    2020
  • 资助金额:
    $ 194.58万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10028746
  • 财政年份:
    2020
  • 资助金额:
    $ 194.58万
  • 项目类别:
Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
  • 批准号:
    10839623
  • 财政年份:
    2017
  • 资助金额:
    $ 194.58万
  • 项目类别:

相似海外基金

HNDS-R: Connectivity, Inclusiveness, and the Permeability of Basic Science
HNDS-R:基础科学的连通性、包容性和渗透性
  • 批准号:
    2318404
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
    Standard Grant
Advancing the basic science of membrane permeability in macrocyclic peptides
推进大环肽膜渗透性的基础科学
  • 批准号:
    10552484
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
  • 批准号:
    10576701
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
  • 批准号:
    480914
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
    Miscellaneous Programs
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
  • 批准号:
    FL210100071
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
    Australian Laureate Fellowships
Coordinating and Data Management Center for Translational and Basic Science Research in Early Lesions
早期病变转化和基础科学研究协调和数据管理中心
  • 批准号:
    10517004
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
Developing science communication on large scale basic science represented by accelerator science
发展以加速器科学为代表的大规模基础科学科学传播
  • 批准号:
    22K02974
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
UCSF - UCB TRAC Basic Science CORE
UCSF - UCB TRAC 基础科学核心
  • 批准号:
    10674711
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
Basic Science Core - Imaging
基础科学核心 - 成像
  • 批准号:
    10588228
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
Basic Science Core - Biosafety & Biocontainment Core (BBC)
基础科学核心 - 生物安全
  • 批准号:
    10431468
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了