Biomedical Image Computing and Informatics Cluster

生物医学图像计算与信息学集群

基本信息

  • 批准号:
    9273767
  • 负责人:
  • 金额:
    $ 194.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

Abstract The Biomedical Image Computing and Informatics Cluster (BICIC) will meet the rapidly growing needs of biomedical image computing research at Penn, and at the Center for Biomedical Image Computing in particular, and of the center's network of NIH-funded collaborating studies. Biomedical image computing faces several challenges. Increased algorithmic complexity demands computationally intensive computing and data mining of large collections of imaging, clinical and genetic data from growing patient populations is needed in order to discover biologically and clinically important relationships. These challenges underline the need for the advanced computing and storage facilities that the BICIC will provide. The proposed instrument represents an approximate 7-fold increase over the currently available resources, allowing both a more rapid execution of existing computerized analyses and providing the ability to explore methods that are currently infeasible with current equipment. The availability of this computing power in a single facility, instead of scattered resources of individual labs, will enable collaboration on algorithms, programming methods, datasets, and processing techniques that is not currently possible. The proposed server will provide a platform for developers and users of these sophisticated and demanding algorithms to push the envelope of biomedical image computing science to new levels. The proposed supercomputer will allow for high throughput analysis of scans, accelerating knowledge discovery and design of further analyses. The contribution of such a system to basic scientific research will be immense, as many scientific projects that are now infeasible, or which require computation measured in weeks or months, will produce results within minutes or days. The facility will encourage rapid development of complex image and connectomic analysis, pattern recognition, and data mining algorithms, often working on high- dimensional multi-parametric data, thereby allowing us to maximize the amount and accuracy of information gathered from biomedical images. Data mining of large databases and of complex data will expose new relationships between genotypes and phenotypes, and will potentially reveal subtle characteristics of certain pathologies that have clinical values. It will also aid Penn's strong focus on translational research in the field of medical imaging, which is currently limited by the lack of a sufficiently powerful computer system to facilitate the demanding imaging studies. The basic and clinical research that the proposed computational server will enable is expected to have a very significant clinical impact, underlining the importance of the project.
摘要 生物医学图像计算和信息学集群(BICIC)将满足快速增长的需求 宾夕法尼亚大学和生物医学图像计算中心的生物医学图像计算研究 尤其是该中心由美国国立卫生研究院资助的合作研究网络。生物医学影像 计算面临着几个挑战。增加的算法复杂性要求在计算上 对大量成像、临床和遗传数据进行密集的计算和数据挖掘 为了发现生物学和临床上的重要意义,需要不断增加的患者群体。 两性关系。这些挑战突显了对先进计算和存储设施的需求 BICIC将提供的。拟议的工具比起以前增加了大约7倍 目前可用的资源,既可以更快地执行现有的计算机化 分析并提供探索当前不可行的方法的能力 设备。在单个设施中获得这种计算能力,而不是分散的资源 将在算法、编程方法、数据集和 目前还不可能的处理技术。拟议的服务器将为以下方面提供平台 这些复杂且要求苛刻的算法的开发人员和用户要突破 生物医学图像计算科学迈上新台阶。拟议中的超级计算机将允许高 扫描吞吐量分析,加速知识发现和进一步分析的设计。这个 这种系统对基础科学研究的贡献将是巨大的,就像许多科学项目一样 现在是不可行的,或者需要以周或月为单位进行计算的,将产生 在几分钟或几天内得出结果。该设施将鼓励快速开发复杂的图像和 连通分析、模式识别和数据挖掘算法,通常致力于 多维多参数数据,从而使我们能够最大限度地提高 从生物医学图像中收集的信息。大型数据库和复杂数据的数据挖掘 将揭示基因类型和表型之间的新关系,并可能揭示微妙的 具有临床价值的某些病理特征。这也将有助于宾夕法尼亚大学将重点放在 医学成像领域的转化性研究,目前受到缺乏 足够强大的计算机系统,以方便要求苛刻的成像研究。基本的和 拟议的计算服务器将实现的临床研究预计将有非常 显著的临床影响,强调了该项目的重要性。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Liver Tumor Segmentation Benchmark (LiTS).
  • DOI:
    10.1016/j.media.2022.102680
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Bilic, Patrick;Christ, Patrick;Li, Hongwei Bran;Vorontsov, Eugene;Ben-Cohen, Avi;Kaissis, Georgios;Szeskin, Adi;Jacobs, Colin;Mamani, Gabriel Efrain Humpire;Chartrand, Gabriel;Lohoefer, Fabian;Holch, Julian Walter;Sommer, Wieland;Hofmann, Felix;Hostettler, Alexandre;Lev-Cohain, Naama;Drozdzal, Michal;Amitai, Michal Marianne;Vivanti, Refael;Sosna, Jacob;Ezhov, Ivan;Sekuboyina, Anjany;Navarro, Fernando;Kofler, Florian;Paetzold, Johannes C.;Shit, Suprosanna;Hu, Xiaobin;Lipkova, Jana;Rempfler, Markus;Piraud, Marie;Kirschke, Jan;Wiestler, Benedikt;Zhang, Zhiheng;Huelsemeyer, Christian;Beetz, Marcel;Ettlinger, Florian;Antonelli, Michela;Bae, Woong;Bellver, Miriam;Bi, Lei;Chen, Hao;Chlebus, Grzegorz;Dam, Erik B.;Dou, Qi;Fu, Chi-Wing;Georgescu, Bogdan;Giro-I-Nieto, Xavier;Gruen, Felix;Han, Xu;Heng, Pheng-Ann;Hesser, Jurgen;Moltz, Jan Hendrik;Igel, Christian;Isensee, Fabian;Jaeger, Paul;Jia, Fucang;Kaluva, Krishna Chaitanya;Khened, Mahendra;Kim, Ildoo;Kim, Jae-Hun;Kim, Sungwoong;Kohl, Simon;Konopczynski, Tomasz;Kori, Avinash;Krishnamurthi, Ganapathy;Li, Fan;Li, Hongchao;Li, Junbo;Li, Xiaomeng;Lowengrub, John;Ma, Jun;Maier-Hein, Klaus;Maninis, Kevis-Kokitsi;Meine, Hans;Merhof, Dorit;Pai, Akshay;Perslev, Mathias;Petersen, Jens;Pont-Tuset, Jordi;Qi, Jin;Qi, Xiaojuan;Rippel, Oliver;Roth, Karsten;Sarasua, Ignacio;Schenk, Andrea;Shen, Zengming;Torres, Jordi;Wachinger, Christian;Wang, Chunliang;Weninger, Leon;Wu, Jianrong;Xu, Daguang;Yang, Xiaoping;Yu, Simon Chun-Ho;Yuan, Yading;Yue, Miao;Zhang, Liping;Cardoso, Jorge;Bakas, Spyridon;Braren, Rickmer;Heinemann, Volker;Pal, Christopher;Tang, An;Kadoury, Samuel;Soler, Luc;van Ginneken, Bram;Greenspan, Hayit;Joskowicz, Leo;Menze, Bjoern
  • 通讯作者:
    Menze, Bjoern
Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes.
  • DOI:
    10.1016/j.biopsych.2022.03.021
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
  • 通讯作者:
Radiomics and radiogenomics in pediatric neuro-oncology: A review.
  • DOI:
    10.1093/noajnl/vdac083
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
HiG2Vec: hierarchical representations of Gene Ontology and genes in the Poincaré ball.
Unsupervised machine learning using K-means identifies radiomic subgroups of pediatric low-grade gliomas that correlate with key molecular markers.
  • DOI:
    10.1016/j.neo.2022.100869
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haldar D;Kazerooni AF;Arif S;Familiar A;Madhogarhia R;Khalili N;Bagheri S;Anderson H;Shaikh IS;Mahtabfar A;Kim MC;Tu W;Ware J;Vossough A;Davatzikos C;Storm PB;Resnick A;Nabavizadeh A
  • 通讯作者:
    Nabavizadeh A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christos Davatzikos其他文献

Christos Davatzikos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christos Davatzikos', 18)}}的其他基金

Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
  • 批准号:
    10714834
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
The Neuroimaging Brain Chart Software Suite
神经影像脑图软件套件
  • 批准号:
    10581015
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
  • 批准号:
    10625442
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
  • 批准号:
    10421222
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10696100
  • 财政年份:
    2020
  • 资助金额:
    $ 194.58万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10263220
  • 财政年份:
    2020
  • 资助金额:
    $ 194.58万
  • 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
  • 批准号:
    10825403
  • 财政年份:
    2020
  • 资助金额:
    $ 194.58万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10475286
  • 财政年份:
    2020
  • 资助金额:
    $ 194.58万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10028746
  • 财政年份:
    2020
  • 资助金额:
    $ 194.58万
  • 项目类别:
Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
  • 批准号:
    10839623
  • 财政年份:
    2017
  • 资助金额:
    $ 194.58万
  • 项目类别:

相似海外基金

HNDS-R: Connectivity, Inclusiveness, and the Permeability of Basic Science
HNDS-R:基础科学的连通性、包容性和渗透性
  • 批准号:
    2318404
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
    Standard Grant
Advancing the basic science of membrane permeability in macrocyclic peptides
推进大环肽膜渗透性的基础科学
  • 批准号:
    10552484
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
  • 批准号:
    10576701
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
  • 批准号:
    480914
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
    Miscellaneous Programs
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
  • 批准号:
    FL210100071
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
    Australian Laureate Fellowships
Developing science communication on large scale basic science represented by accelerator science
发展以加速器科学为代表的大规模基础科学科学传播
  • 批准号:
    22K02974
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Coordinating and Data Management Center for Translational and Basic Science Research in Early Lesions
早期病变转化和基础科学研究协调和数据管理中心
  • 批准号:
    10517004
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
Basic Science Core - Imaging
基础科学核心 - 成像
  • 批准号:
    10588228
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
UCSF - UCB TRAC Basic Science CORE
UCSF - UCB TRAC 基础科学核心
  • 批准号:
    10674711
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
Basic Science Core - Biosafety & Biocontainment Core (BBC)
基础科学核心 - 生物安全
  • 批准号:
    10431468
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了