Trapping reactive intermediates and their application towards catalysis
捕获反应中间体及其在催化中的应用
基本信息
- 批准号:10419401
- 负责人:
- 金额:$ 33.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressBacteriaBiological ProcessCarbonCatalysisChemicalsChemistryCobaltComplexCopperCrystallizationCytochrome P450CytochromesDevelopmentEnergy-Generating ResourcesEnzymesFamilyFatty AcidsFormulationGenerationsGoalsHormonesHydrocarbonsHydrogen BondingHydroxylationIronLigandsMagnetometriesMetalsMethaneMethane hydroxylaseMixed Function OxygenasesModelingNickelOxidantsOxidation-ReductionOxidesOxygenParticulatePharmacologic SubstancePopulationPorphyrinsProcessPropertyReactionReagentResearchRouteSeriesSpectrum AnalysisSteroidsSystemTransition ElementsWaste ManagementWaste Productsadductbasecatalystchemical synthesiselectronic structureflexibilityfrontierfunctional groupfunctional mimicsimprovedinsightmetal complexmolecular orbitalnoveloxeneoxidationsmall moleculetheoriestrait
项目摘要
Project Summary
The family of monooxygenase enzymes are utilized to perform oxidative group transfer catalysis to broadly drive
one of two functions: (1) metabolize hydrocarbon building blocks (e.g., steroids, fatty acids) for waste
management or hormone synthesis in cytrochrome P450 (CYPs); and (2) the utilization of methane as the sole
carbon and energy source (i.e., methanotrophic bacteria). The common trait amongst the oxidizing enzymes is
the ability to electronically tune their catalytic centers to achieve oxygen transfer to robust C–H bond substrates.
Adapting the electronic structure tuning principles to devise new synthetic, abiological catalysts holds great
promise to (1) understand how the enzymatic systems might function by uncovering what reaction sequences
are possible, and (2) developing new catalytic reactions that mimic the reactivity of the monooxygenases.
This proposal describes the synthesis and characterization of novel metal-ligand multiple-bonds and
metal-stabilized radicals to mimic the function of biological monooxygenases. Monooxygenases utilize metal-
oxenoid ligands to drive C−H bond activation and C−heteroatom bond formation, providing a blueprint on how to
emulate this reactivity. The ability to selectively incorporate functionality into unactivated C–H bonds represents
a significant advance in converting inexpensive chemical feed stocks (e.g. hydrocarbons) to value-added
functional molecules (e.g., pharmaceutical precursors). To achieve this goal, this proposal outlines a strategy to
generate metal-ligand multiply-bonded complexes featuring oxenoid functionalities and examine their reaction
chemistry as a function of transition metal and oxenoid ligand redox state. This proposal seeks to address the
following questions: (1) Which transition metal-oxo linkage and attendant electronic structure can facilitate C-H
bond hydroxylation chemistry? (2) Can monomeric copper support a terminal oxo-like ligand as would be
suggested for the reactive oxidant in particulate methane monooxygenases? (4) How do functional group
oxidation states (i.e., oxo, oxyl, oxene) impact functional group transfer catalysis? (5) Can metal-stabilized ligand
radicals in general be developed to enable new C-H bond functionalization catalysis?
Using dipyrrin ligand platforms as truncated models of the porphyrin platform found in cytochrome
monooxygenases, this proposal outlines a strategy to synthesize and characterize metal-ligand multiple bonds
on iron, cobalt, nickel, and copper. A sterically encumbered dipyrrin is proposed to be ideal for the synthesis,
crystallization, and full spectroscopic characterization of a terminal oxenoid adducts of Cu akin to the potential
terminal Cu(O) adduct in particulate methane monooxygenase. The broader scientific impact of the proposed
research can be summarized as the following: this study will improve the field’s understanding of factors
contributing to the promotion of productive C–H bond activation and functionalization, further developing new
catalysts to synthesize value-added, commodity chemicals via clean reaction routes with minimal waste product.
项目摘要
单加氧酶家族被用来执行氧化基转移催化以广泛驱动
两种功能之一:(1)代谢碳氢化合物组成成分(如类固醇、脂肪酸)以产生废物
细胞色素P450(CYPS)的管理或激素合成;(2)以甲烷为唯一的利用
碳和能源(即甲烷营养细菌)。这些氧化酶的共同特征是
电子调节其催化中心的能力,以实现氧转移到坚固的C-H键底物。
采用电子结构调整原理来设计新的合成、非生物催化剂
承诺(1)通过揭示什么反应序列来了解酶系统可能的功能
以及(2)开发模仿单加氧酶反应性的新催化反应。
本文介绍了新型金属-配体多键化合物的合成和表征。
金属稳定的自由基,模拟生物单加氧酶的功能。单加氧酶利用金属-
推动C-−氢键活化和C-−杂原子键形成的恶烯类配体,为如何
模仿这种反应性。选择性地将官能团结合到未活化的C-H键中的能力代表
在将廉价的化学原料(例如碳氢化合物)转化为附加值方面取得重大进展
功能分子(例如,药物前体)。为了实现这一目标,本提案概述了一项战略,以
合成具有恶烯官能团的金属-配体多键配合物并考察它们的反应
作为过渡金属和恶烯配体氧化还原状态的函数的化学。这项提议旨在解决
以下问题:(1)哪种过渡金属-氧键和伴随的电子结构可以促进C-H
键-羟基化化学?(2)单体铜能支持末端氧配体吗?
建议用作颗粒甲烷单加氧酶中的活性氧化剂?(4)官能团如何
氧化态(即氧、氧、氧)对官能团转移催化的影响?(5)金属稳定的配体
自由基一般被开发来实现新的C-H键官能化催化?
用二吡咯配体平台作为细胞色素中的卟啉平台的截断模型
单加氧酶,这项建议概述了一种合成和表征金属-配体多键的策略
在铁、钴、镍和铜上。空间位阻的联吡咯被认为是合成的理想化合物,
类似于电位的铜的末端恶烯加合物的结晶和全光谱表征
颗粒甲烷单加氧酶中的末端铜(O)加合物。建议的科学影响更广泛
研究内容可以概括为:本研究将提高对该领域影响因素的认识
有助于促进生产性C-H键的活化和官能化,进一步开发新的
催化剂,通过清洁的反应路线,以最少的废物合成附加值的商品化学品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Theodore A Betley其他文献
Theodore A Betley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Theodore A Betley', 18)}}的其他基金
Trapping reactive intermediates and their application towards catalysis
捕获反应中间体及其在催化中的应用
- 批准号:
10586065 - 财政年份:2022
- 资助金额:
$ 33.18万 - 项目类别:
Correlation of electronic structure to iron catalyzed C-H bond functionalization
电子结构与铁催化C-H键功能化的相关性
- 批准号:
8945459 - 财政年份:2015
- 资助金额:
$ 33.18万 - 项目类别:
Correlation of electronic structure to iron catalyzed C-H bond functionalization
电子结构与铁催化C-H键功能化的相关性
- 批准号:
9115643 - 财政年份:2015
- 资助金额:
$ 33.18万 - 项目类别:
Polynuclear iron complexes as functional mimics of the nitrogenase FeMo-cofactor
多核铁配合物作为固氮酶 FeMo 辅因子的功能模拟物
- 批准号:
9383904 - 财政年份:2011
- 资助金额:
$ 33.18万 - 项目类别:
Polynuclear iron complexes as functional mimics of the nitrogenase FeMo-cofactor
多核铁配合物作为固氮酶 FeMo 辅因子的功能模拟物
- 批准号:
8331480 - 财政年份:2011
- 资助金额:
$ 33.18万 - 项目类别:
Polynuclear iron complexes as functional mimics of the nitrogenase FeMo-cofactor
多核铁配合物作为固氮酶 FeMo 辅因子的功能模拟物
- 批准号:
8159209 - 财政年份:2011
- 资助金额:
$ 33.18万 - 项目类别:
Polynuclear iron complexes as functional mimics of the nitrogenase FeMo-cofactor
多核铁配合物作为固氮酶 FeMo 辅因子的功能模拟物
- 批准号:
8474791 - 财政年份:2011
- 资助金额:
$ 33.18万 - 项目类别:
Polynuclear iron complexes as functional mimics of the nitrogenase FeMo-cofactor
多核铁配合物作为固氮酶 FeMo 辅因子的功能模拟物
- 批准号:
9752571 - 财政年份:2011
- 资助金额:
$ 33.18万 - 项目类别:
Polynuclear iron complexes as functional mimics of the nitrogenase FeMo-cofactor
多核铁配合物作为固氮酶 FeMo 辅因子的功能模拟物
- 批准号:
9982407 - 财政年份:2011
- 资助金额:
$ 33.18万 - 项目类别:
High-Valent Metal Oxos to Model OEC in Photosystem II
高价金属 Oxos 在 Photosystem II 中模拟 OEC
- 批准号:
7054996 - 财政年份:2005
- 资助金额:
$ 33.18万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 33.18万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 33.18万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 33.18万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 33.18万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 33.18万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.18万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.18万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 33.18万 - 项目类别:
Research Grant














{{item.name}}会员




