Trapping reactive intermediates and their application towards catalysis

捕获反应中间体及其在催化中的应用

基本信息

  • 批准号:
    10586065
  • 负责人:
  • 金额:
    $ 33.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-15 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

Project Summary The family of monooxygenase enzymes are utilized to perform oxidative group transfer catalysis to broadly drive one of two functions: (1) metabolize hydrocarbon building blocks (e.g., steroids, fatty acids) for waste management or hormone synthesis in cytrochrome P450 (CYPs); and (2) the utilization of methane as the sole carbon and energy source (i.e., methanotrophic bacteria). The common trait amongst the oxidizing enzymes is the ability to electronically tune their catalytic centers to achieve oxygen transfer to robust C–H bond substrates. Adapting the electronic structure tuning principles to devise new synthetic, abiological catalysts holds great promise to (1) understand how the enzymatic systems might function by uncovering what reaction sequences are possible, and (2) developing new catalytic reactions that mimic the reactivity of the monooxygenases. This proposal describes the synthesis and characterization of novel metal-ligand multiple-bonds and metal-stabilized radicals to mimic the function of biological monooxygenases. Monooxygenases utilize metal- oxenoid ligands to drive C−H bond activation and C−heteroatom bond formation, providing a blueprint on how to emulate this reactivity. The ability to selectively incorporate functionality into unactivated C–H bonds represents a significant advance in converting inexpensive chemical feed stocks (e.g. hydrocarbons) to value-added functional molecules (e.g., pharmaceutical precursors). To achieve this goal, this proposal outlines a strategy to generate metal-ligand multiply-bonded complexes featuring oxenoid functionalities and examine their reaction chemistry as a function of transition metal and oxenoid ligand redox state. This proposal seeks to address the following questions: (1) Which transition metal-oxo linkage and attendant electronic structure can facilitate C-H bond hydroxylation chemistry? (2) Can monomeric copper support a terminal oxo-like ligand as would be suggested for the reactive oxidant in particulate methane monooxygenases? (4) How do functional group oxidation states (i.e., oxo, oxyl, oxene) impact functional group transfer catalysis? (5) Can metal-stabilized ligand radicals in general be developed to enable new C-H bond functionalization catalysis? Using dipyrrin ligand platforms as truncated models of the porphyrin platform found in cytochrome monooxygenases, this proposal outlines a strategy to synthesize and characterize metal-ligand multiple bonds on iron, cobalt, nickel, and copper. A sterically encumbered dipyrrin is proposed to be ideal for the synthesis, crystallization, and full spectroscopic characterization of a terminal oxenoid adducts of Cu akin to the potential terminal Cu(O) adduct in particulate methane monooxygenase. The broader scientific impact of the proposed research can be summarized as the following: this study will improve the field’s understanding of factors contributing to the promotion of productive C–H bond activation and functionalization, further developing new catalysts to synthesize value-added, commodity chemicals via clean reaction routes with minimal waste product.
Project Summary The family of monooxygenase enzymes are utilized to perform oxidative group transfer catalysis to broadly drive one of two functions: (1) metabolize hydrocarbon building blocks (e.g., steroids, fatty acids) for waste management or hormone synthesis in cytrochrome P450 (CYPs); and (2) the utilization of methane as the sole carbon and energy source (i.e., methanotrophic bacteria). The common trait amongst the oxidizing enzymes is the ability to electronically tune their catalytic centers to achieve oxygen transfer to robust C–H bond substrates. Adapting the electronic structure tuning principles to devise new synthetic, abiological catalysts holds great promise to (1) understand how the enzymatic systems might function by uncovering what reaction sequences are possible, and (2) developing new catalytic reactions that mimic the reactivity of the monooxygenases. This proposal describes the synthesis and characterization of novel metal-ligand multiple-bonds and metal-stabilized radicals to mimic the function of biological monooxygenases. Monooxygenases utilize metal- oxenoid ligands to drive C−H bond activation and C−heteroatom bond formation, providing a blueprint on how to emulate this reactivity. The ability to selectively incorporate functionality into unactivated C–H bonds represents a significant advance in converting inexpensive chemical feed stocks (e.g. hydrocarbons) to value-added functional molecules (e.g., pharmaceutical precursors). To achieve this goal, this proposal outlines a strategy to generate metal-ligand multiply-bonded complexes featuring oxenoid functionalities and examine their reaction chemistry as a function of transition metal and oxenoid ligand redox state. This proposal seeks to address the following questions: (1) Which transition metal-oxo linkage and attendant electronic structure can facilitate C-H bond hydroxylation chemistry? (2) Can monomeric copper support a terminal oxo-like ligand as would be suggested for the reactive oxidant in particulate methane monooxygenases? (4) How do functional group oxidation states (i.e., oxo, oxyl, oxene) impact functional group transfer catalysis? (5) Can metal-stabilized ligand radicals in general be developed to enable new C-H bond functionalization catalysis? Using dipyrrin ligand platforms as truncated models of the porphyrin platform found in cytochrome monooxygenases, this proposal outlines a strategy to synthesize and characterize metal-ligand multiple bonds on iron, cobalt, nickel, and copper. A sterically encumbered dipyrrin is proposed to be ideal for the synthesis, crystallization, and full spectroscopic characterization of a terminal oxenoid adducts of Cu akin to the potential terminal Cu(O) adduct in particulate methane monooxygenase. The broader scientific impact of the proposed research can be summarized as the following: this study will improve the field’s understanding of factors contributing to the promotion of productive C–H bond activation and functionalization, further developing new catalysts to synthesize value-added, commodity chemicals via clean reaction routes with minimal waste product.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Theodore A Betley其他文献

Theodore A Betley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Theodore A Betley', 18)}}的其他基金

Trapping reactive intermediates and their application towards catalysis
捕获反应中间体及其在催化中的应用
  • 批准号:
    10419401
  • 财政年份:
    2022
  • 资助金额:
    $ 33.18万
  • 项目类别:
Correlation of electronic structure to iron catalyzed C-H bond functionalization
电子结构与铁催化C-H键功能化的相关性
  • 批准号:
    8945459
  • 财政年份:
    2015
  • 资助金额:
    $ 33.18万
  • 项目类别:
Correlation of electronic structure to iron catalyzed C-H bond functionalization
电子结构与铁催化C-H键功能化的相关性
  • 批准号:
    9115643
  • 财政年份:
    2015
  • 资助金额:
    $ 33.18万
  • 项目类别:
Polynuclear iron complexes as functional mimics of the nitrogenase FeMo-cofactor
多核铁配合物作为固氮酶 FeMo 辅因子的功能模拟物
  • 批准号:
    9383904
  • 财政年份:
    2011
  • 资助金额:
    $ 33.18万
  • 项目类别:
Polynuclear iron complexes as functional mimics of the nitrogenase FeMo-cofactor
多核铁配合物作为固氮酶 FeMo 辅因子的功能模拟物
  • 批准号:
    8331480
  • 财政年份:
    2011
  • 资助金额:
    $ 33.18万
  • 项目类别:
Polynuclear iron complexes as functional mimics of the nitrogenase FeMo-cofactor
多核铁配合物作为固氮酶 FeMo 辅因子的功能模拟物
  • 批准号:
    8159209
  • 财政年份:
    2011
  • 资助金额:
    $ 33.18万
  • 项目类别:
Polynuclear iron complexes as functional mimics of the nitrogenase FeMo-cofactor
多核铁配合物作为固氮酶 FeMo 辅因子的功能模拟物
  • 批准号:
    8474791
  • 财政年份:
    2011
  • 资助金额:
    $ 33.18万
  • 项目类别:
Polynuclear iron complexes as functional mimics of the nitrogenase FeMo-cofactor
多核铁配合物作为固氮酶 FeMo 辅因子的功能模拟物
  • 批准号:
    9752571
  • 财政年份:
    2011
  • 资助金额:
    $ 33.18万
  • 项目类别:
Polynuclear iron complexes as functional mimics of the nitrogenase FeMo-cofactor
多核铁配合物作为固氮酶 FeMo 辅因子的功能模拟物
  • 批准号:
    9982407
  • 财政年份:
    2011
  • 资助金额:
    $ 33.18万
  • 项目类别:
High-Valent Metal Oxos to Model OEC in Photosystem II
高价金属 Oxos 在 Photosystem II 中模拟 OEC
  • 批准号:
    7054996
  • 财政年份:
    2005
  • 资助金额:
    $ 33.18万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了