Data Management and Analysis Core
数据管理与分析核心
基本信息
- 批准号:10419282
- 负责人:
- 金额:$ 30.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-07 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAddressAdjuvantAreaB-LymphocytesBioinformaticsBiologicalCOVID-19 vaccineCellsClinicalCohort AnalysisCollaborationsComplexComputational BiologyDataData AnalysesData SecurityData SetData Storage and RetrievalDatabasesDevelopmentDoctor of PhilosophyFundingGene ExpressionGene Expression ProfileGenerationsGenetic TranscriptionGoalsHealth Insurance Portability and Accountability ActHeterogeneityHumanImmuneImmune responseImmune systemImmunityImmunologistImmunologyIndividualInfectionKnowledgeLinkMasksMeasuresMediatingMedicineMessenger RNAMethodsModelingMolecular ProfilingMultiomic DataNational Institute of Allergy and Infectious DiseaseNatural ImmunityPathway interactionsPeripheral Blood Mononuclear CellPlasmaPopulationRecording of previous eventsResearchRoleSamplingScientistSerumServicesStatistical Data InterpretationSystemSystems AnalysisT cell responseT-LymphocyteTechniquesTestingTimeTranscriptUnited States National Institutes of HealthUniversitiesVaccinationVaccineeVaccinesVirus Diseasesadaptive immune responseadaptive immunitybasebioinformatics toolbiological systemsbiomedical data sciencecohortcomputational suitecomputer frameworkcomputer sciencecomputerized toolscytokinedata de-identificationdata managementdata sharingdata submissiondifferential expressionexperiencehuman dataimprovedmembermetabolic profilemetabolomicsmicrobiomemid-career facultymultimodalitymultiple omicsneutralizing antibodynovelpublic repositoryrepositoryresponsesingle-cell RNA sequencingtooltranscription factortranscriptomevaccine responsevaccine trial
项目摘要
ABSTRACT – Data Management and Analysis Core.
Identifying the biological features of the human immune response that correlate with and predict the
development of an effective immune response to vaccination is an overarching goal of this U19 consortium.
The Data Management and Analysis Core (DMAC) in this proposal has two roles to support this overarching
goal. First, the core will provide reliable data management service for all the data generated by the U19 study.
It will provide management of large amounts of de-identified data, along with timely data submission to NIH
databases. Second, the DMAC will apply a suite of computational tools to analyze data from human samples of
serum, plasma, or peripheral blood mononuclear cell (PBMC), and individual immune cells obtained before and
after vaccination to create new knowledge about the biological basis for effective vaccine-mediated immunity.
To achieve these goals, we have assembled a team of computational biologists and immunologists with deep
expertise in the generation and analysis of highly complex datasets of transcript abundance and metabolic
profiles, who will support Projects 1, 2, and 3 in the following aims:
Aim 1. To provide data management service for the data generated by Stanford HIPC. The DMAC will
provide efficient HIPAA-compliant data storage, backup, and transfer with adequate data security and the
protection of subject identity. It will also facilitate data sharing between the Projects, and with public by
submitting data to appropriate public repositories such as the NIH GEO and ImmPort.
Aim 2: Provide bioinformatics support to Projects 1, 2 and 3 for analyzing systems immunology data
generated in those projects. The DMAC will assist the Projects in this proposal with various statistical and
bioinformatics analysis including differential expression, pathway, transcription factor, interaction network and
other statistical analyses as needed.
Aim 3: Integrative analysis of multiomics signatures of vaccine immunity from orthogonal data sets,
and from public datasets of similar studies. Developing a holistic and system-level view of immune
responses to vaccines requires (1) tools that can accurately capture interactions across the diverse
components of the immune system as they coordinate during response to vaccination and (2) cohorts
representative of the heterogeneity observed in the real world. We will satisfy both criteria in in this aim.
摘要 – 数据管理和分析核心。
识别与相关并预测的人类免疫反应的生物学特征
开发针对疫苗接种的有效免疫反应是该 U19 联盟的首要目标。
本提案中的数据管理和分析核心 (DMAC) 有两个角色来支持这一总体目标
目标。首先,核心将为U19研究产生的所有数据提供可靠的数据管理服务。
它将管理大量去识别化数据,并及时向 NIH 提交数据
数据库。其次,DMAC 将应用一套计算工具来分析人类样本的数据
血清、血浆或外周血单核细胞(PBMC)以及之前和之后获得的个体免疫细胞
接种疫苗后,创建有关有效疫苗介导免疫的生物学基础的新知识。
为了实现这些目标,我们组建了一支由计算生物学家和免疫学家组成的团队,具有深厚的
生成和分析高度复杂的转录本丰度和代谢数据集的专业知识
个人资料,他们将支持项目 1、2 和 3,以实现以下目标:
目标1.为斯坦福HIPC生成的数据提供数据管理服务。 DMAC 将
提供高效的符合 HIPAA 的数据存储、备份和传输,并具有足够的数据安全性和
保护主体身份。它还将促进项目之间以及与公众的数据共享
将数据提交到适当的公共存储库,例如 NIH GEO 和 ImmPort。
目标 2:为项目 1、2 和 3 提供生物信息学支持,以分析系统免疫学数据
在这些项目中生成。 DMAC 将通过各种统计和数据协助本提案中的项目
生物信息学分析,包括差异表达、通路、转录因子、相互作用网络和
根据需要进行其他统计分析。
目标 3:根据正交数据集对疫苗免疫的多组学特征进行综合分析,
以及类似研究的公共数据集。发展免疫的整体和系统层面的观点
对疫苗的反应需要(1)能够准确捕获不同群体之间相互作用的工具
免疫系统的组成部分在疫苗接种反应过程中进行协调,以及 (2) 群体
代表了现实世界中观察到的异质性。为了实现这一目标,我们将满足这两个标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Purveshkumar Khatri其他文献
Purveshkumar Khatri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Purveshkumar Khatri', 18)}}的其他基金
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30.97万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30.97万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30.97万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30.97万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30.97万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30.97万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30.97万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30.97万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30.97万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30.97万 - 项目类别:
Research Grant














{{item.name}}会员




