The role of Piezo1 in bone homeostasis and mechanotransduction
Piezo1 在骨稳态和力传导中的作用
基本信息
- 批准号:10418767
- 负责人:
- 金额:$ 33.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-17 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdultAgingAgonistAllelesAreaBone GrowthBone MatrixBone RegenerationBone remodelingCalciumCalcium ChannelCalcium SignalingCell Surface ProteinsCell modelCellsChemicalsCiliaComplementDevelopmentElderlyEnterobacteria phage P1 Cre recombinaseExhibitsFocal AdhesionsGenerationsGenesHindlimb SuspensionHomeostasisImmobilizationIn VitroIndividualIntegrinsIon ChannelKnockout MiceKnowledgeLigandsLiquid substanceMechanical StimulationMechanicsMediatingModelingMolecularMusOsteoblastsOsteoclastsOsteocytesOsteogenesisPharmacologyPhenotypePiezo 1 ion channelPlayRattusRegenerative responseRoleSignal PathwaySkeletonStimulusStructureTailTail SuspensionTestingTransgenesTransgenic MiceWNT Signaling PathwayWild Type MouseWorkbasebonebone lossbone massbone strengthconditional knockoutcortical bonedentin matrix protein 1fluid flowfracture riskgenetic approachhuman old age (65+)in vivoinhibitormechanical forcemechanical loadmechanical signalmechanical stimulusmechanotransductionmouse geneticsosteoblast differentiationoverexpressionpostnatalpreventresponseshear stressskeletalsubstantia spongiosatherapy developmenttibiaulna
项目摘要
PROJECT SUMMARY/ABSTRACT
Mechanical stimuli promote bone growth and are critical for skeletal homeostasis during adulthood. Loss of
mechanical signals decreases bone mass and increases fracture risk. Osteocytes, which are cells buried in the
bone matrix and derived from osteoblasts, are able to sense changes in mechanical load and orchestrate bone
remodeling. Several lines of evidence suggest that calcium channels are involved in the sensing of mechanical
load by osteocytes. For example, calcium influx is one of the earliest responses of osteocytes to mechanical
stimuli in vitro and in vivo. Consistent with a functional role for calcium signaling in the response to mechanical
forces, the response of osteocytes to mechanical stimuli can be inhibited by blocking calcium channels using
chemical blockers. Moreover, load-induced bone formation in the rat ulna is significantly blunted by calcium
channel inhibitors. However, the identity of the calcium channels activated by mechanical forces and their
functional role as mechanosensors in bone remain unclear. We have found that Piezo1 calcium channel is
highly expressed in osteocytes, and that its expression and activity are increased by mechanical stimulation in
osteocytes. In addition, deletion of Piezo1 in osteoblasts and osteocytes decreases both bone mass and bone
strength in mice, consistent with loss of skeletal responsiveness to mechanical stimulation. Moreover, the
skeletal response to anabolic loading is blunted in mice lacking Piezo1 in osteoblasts and osteocytes. Wnt1, a
ligand for Wnt signaling that is known to be upregulated by mechanical signals and stimulate bone formation, is
downregulated in Piezo1 conditional knockout mice. Importantly, activation of Piezo1 by its chemical agonist,
Yoda1, mimics the effects of fluid flow on osteocytes and increases bone mass in mice. Based on this
evidence, we hypothesize that osteocytes sense changes in mechanical signals through Piezo1 and thereby
promote bone formation in part by activating signaling pathways that increase the expression of Wnt1. To test
this hypothesis, we will determine whether Piezo1 expression by osteocytes is required for mechanical sensing
in the murine skeleton. We will generate mice in which Piezo1 is deleted from osteocytes, but not osteoblasts,
and compare their skeletal phenotype to that observed in mice lacking Piezo1 in osteoblasts and osteocytes.
We also will delete Piezo1 postnatally in adult mice and investigate their response to mechanical loads by tibia
compression (Aim 1). In addition, to understand how Piezo1 promotes bone formation, we will determine the
role of Wnt1 in Piezo1-mediated bone formation in vivo using a mouse genetic approach (Aim 2). In Aim 3, we
will determine whether Piezo1 is responsible for the skeletal response to unloading using a tail-suspension
model. Lastly, we will determine whether pharmacological activation of Piezo1 prevents bone loss associated
with unloading or increases bone mass in old mice. Successful completion of this work should establish a new
model for understanding the skeletal response to anabolic mechanical loading and may suggest new strategies
to develop anabolic therapies for bone loss related to disuse or aging.
项目概要/摘要
机械刺激促进骨骼生长,对于成年期骨骼稳态至关重要。损失
机械信号会降低骨量并增加骨折风险。骨细胞,是埋藏在骨中的细胞
骨基质源自成骨细胞,能够感知机械负荷的变化并协调骨骼
重塑。多项证据表明钙通道参与机械感应
骨细胞负载。例如,钙流入是骨细胞对机械力的最早反应之一。
体外和体内的刺激。与钙信号在机械响应中的功能作用一致
力,可以通过使用阻断钙通道来抑制骨细胞对机械刺激的反应
化学阻滞剂。此外,钙显着削弱了大鼠尺骨中负荷诱导的骨形成
通道抑制剂。然而,机械力激活的钙通道的特性及其
作为机械传感器在骨骼中的功能作用仍不清楚。我们发现Piezo1钙通道是
在骨细胞中高表达,并且其表达和活性通过机械刺激而增加
骨细胞。此外,成骨细胞和骨细胞中 Piezo1 的缺失会降低骨量和骨密度。
小鼠的力量,与骨骼对机械刺激的反应性丧失一致。此外,
在成骨细胞和骨细胞中缺乏 Piezo1 的小鼠中,骨骼对合成代谢负荷的反应减弱。 Wnt1,一个
Wnt 信号传导的配体已知可通过机械信号上调并刺激骨形成,是
Piezo1 条件敲除小鼠中下调。重要的是,Piezo1 通过其化学激动剂激活,
Yoda1 模拟液体流动对骨细胞的影响并增加小鼠的骨量。基于此
根据证据,我们假设骨细胞通过 Piezo1 感知机械信号的变化,从而
部分通过激活增加 Wnt1 表达的信号通路来促进骨形成。测试
根据这个假设,我们将确定机械传感是否需要骨细胞表达 Piezo1
在小鼠骨骼中。我们将培育出骨细胞中删除 Piezo1 的小鼠,但成骨细胞中不删除 Piezo1,
并将它们的骨骼表型与在成骨细胞和骨细胞中缺乏 Piezo1 的小鼠中观察到的骨骼表型进行比较。
我们还将在成年小鼠出生后删除 Piezo1,并研究它们对胫骨机械负载的反应
压缩(目标 1)。此外,为了了解 Piezo1 如何促进骨形成,我们将确定
使用小鼠遗传方法研究 Wnt1 在 Piezo1 介导的体内骨形成中的作用(目标 2)。在目标 3 中,我们
将确定 Piezo1 是否负责使用尾部悬架卸载时的骨骼响应
模型。最后,我们将确定 Piezo1 的药理激活是否可以预防相关的骨质流失
减轻或增加老年小鼠的骨量。这项工作的成功完成应该建立一个新的
用于理解骨骼对合成代谢机械负荷的反应的模型,并可能提出新的策略
开发合成代谢疗法来治疗与废用或衰老相关的骨质流失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinhu Xiong其他文献
Jinhu Xiong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinhu Xiong', 18)}}的其他基金
The role of Piezo1 in bone homeostasis and mechanotransduction
Piezo1 在骨稳态和力传导中的作用
- 批准号:
10642770 - 财政年份:2020
- 资助金额:
$ 33.11万 - 项目类别:
The role of Piezo1 in bone homeostasis and mechanotransduction
Piezo1 在骨稳态和力传导中的作用
- 批准号:
10238777 - 财政年份:2020
- 资助金额:
$ 33.11万 - 项目类别:
Histology, Biomechanics, and Human Tissue Core
组织学、生物力学和人体组织核心
- 批准号:
10495744 - 财政年份:2018
- 资助金额:
$ 33.11万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




