Mechanism of carbon skeleton formation in molybdenum cofactor biosynthesis
钼辅因子生物合成中碳骨架形成机制
基本信息
- 批准号:10418782
- 负责人:
- 金额:$ 37.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAddressAffectAnabolismAntibioticsBacteriaBacterial InfectionsBiochemicalBiological AssayBrainC-terminalCatalysisCessation of lifeChildhoodChronicCoenzymesCombined molybdoflavoprotein enzyme deficiencyCommunicable DiseasesComplexDevelopmentDiseaseElectron Nuclear Double ResonanceEnterobacteriaceaeEnvironmentEnzymesFamilyFoundationsFundingFutureGenesGoalsGrowthGuanineGuanosineHumanHypoxiaIndividualInheritedKnowledgeMutationNutrientOrganismOxidation-ReductionPathway interactionsPatientsPeptidesPeriodicityPharmacologyProteinsPublic HealthReactionRecurrenceResearchResistanceRestSeveritiesSiteStructureTailTestingVertebral columnX-Ray Crystallographyacute symptombasebiophysical techniquescarbon skeletonchronic infectioncofactorcombatelectron donorenzyme mechanismgut inflammationgut microbiotahuman diseaseinhibitorinhibitor therapyinsightloss of function mutationmolybdenum cofactornovel therapeuticspathogenpathogenic bacteriapyranopterintherapeutic developmenttripolyphosphate
项目摘要
Project Summary/Abstract
Molybdenum cofactor (Moco) is a redox cofactor found in almost all organisms. In humans, it is essential for
normal brain development, and mutations in Moco biosynthetic genes cause the fatal and currently incurable
disease, Moco deficiency (MoCD). In pathogenic bacteria, Moco is essential for their growth under hypoxic and
nutrient limiting environments, and therefore essential for pathogen persistence in mammalian hosts. Chronic
bacterial infections are resistant to many antibiotics and cause the recurrence of acute symptoms. However, the
development of therapeutics against MoCD or antibiotics targeting Moco biosynthesis in pathogenic bacteria are
currently difficult due to our limited understanding of the mechanism of Moco biosynthesis. The long-term goal
of this project is to provide a mechanistic understanding of Moco biosynthesis in pathogenic bacteria as well as
in humans. The focus of the current application is the mechanism of two enzymes (MoaA and MoaC) responsible
for the formation of the pyranopterin structure of Moco from guanine 5'-triphosphate (GTP). While the catalytic
functions of MoaA and MoaC had remained ambiguous for >20 years, we recently demonstrated that MoaA
catalyzes the transformation of GTP into 3',8-cyclo-dihydro-GTP (3',8-cH2GTP), while MoaC catalyzes the
conversion of 3',8-cH2GTP to cPMP. In this application, we will investigate the catalytic mechanisms of MoaA
and MoaC in both humans and bacteria through the following three Aims. In Aim 1, the redox function of 4Fe-4S
clusters in MoaA will be investigated both in the resting state and during turnover to address one of the key
unsolved mysteries of the radical SAM enzyme mechanisms. In Aim 2, the function of the C-terminal tail of MoaA
and the mechanism of peptide rescue of MoCD-causing mutations will be investigated through NMR, X-ray
crystallography and biochemical assays using bacterial and human enzymes. In Aim 3, we will test a covalent
and non-covalent mechanisms for MoaC catalysis and investigate the generality of mechanism-based inhibition
of bacterial and human enzymes. The proposed research is significant because it will provide mechanistic
insights into the formation of the Moco backbone and the scientific basis for future development of Moco
biosynthesis inhibitors and novel therapeutics to treat MoCD.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenichi Yokoyama其他文献
Kenichi Yokoyama的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenichi Yokoyama', 18)}}的其他基金
Mechanism of cofactor biosynthesis required for chronic bacterial infection
慢性细菌感染所需辅因子生物合成机制
- 批准号:
8964738 - 财政年份:2015
- 资助金额:
$ 37.6万 - 项目类别:
Mechanism of cofactor biosynthesis required for chronic bacterial infection
慢性细菌感染所需辅因子生物合成机制
- 批准号:
9102114 - 财政年份:2015
- 资助金额:
$ 37.6万 - 项目类别:
Biosynthesis of antifungal nucleoside antibiotics
抗真菌核苷抗生素的生物合成
- 批准号:
10470406 - 财政年份:2015
- 资助金额:
$ 37.6万 - 项目类别:
Mechanism of carbon skeleton formation in molybdenum cofactor biosynthesis
钼辅因子生物合成中碳骨架形成机制
- 批准号:
10242931 - 财政年份:2015
- 资助金额:
$ 37.6万 - 项目类别:
Biosynthesis of antifungal nucleoside antibiotics
抗真菌核苷抗生素的生物合成
- 批准号:
10678669 - 财政年份:2015
- 资助金额:
$ 37.6万 - 项目类别:
Mechanism of carbon skeleton formation in molybdenum cofactor biosynthesis
钼辅因子生物合成中碳骨架形成机制
- 批准号:
10646323 - 财政年份:2015
- 资助金额:
$ 37.6万 - 项目类别:
Mechanism of carbon skeleton formation in molybdenum cofactor biosynthesis
钼辅因子生物合成中碳骨架形成机制
- 批准号:
10058693 - 财政年份:2015
- 资助金额:
$ 37.6万 - 项目类别:
Biosynthesis of peptidyl nucleoside antifungal antibiotics
肽基核苷抗真菌抗生素的生物合成
- 批准号:
8944844 - 财政年份:2015
- 资助金额:
$ 37.6万 - 项目类别:
Biosynthesis of antifungal nucleoside antibiotics-Undergrad research supplement
抗真菌核苷抗生素的生物合成-本科生研究补充
- 批准号:
10393814 - 财政年份:2015
- 资助金额:
$ 37.6万 - 项目类别:
Biosynthesis of antifungal nucleoside antibiotics
抗真菌核苷抗生素的生物合成
- 批准号:
10389266 - 财政年份:2015
- 资助金额:
$ 37.6万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Research Grant