Distance-based ab initio protein structure prediction
基于距离的从头算蛋白质结构预测
基本信息
- 批准号:10418784
- 负责人:
- 金额:$ 34.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAmino Acid SequenceArchitectureAreaArtificial IntelligenceAttentionBiomedical ResearchC-terminalCollaborationsCommunitiesComplexComputational BiologyComputing MethodologiesConflict (Psychology)DependenceDevelopmentGenomeHereditary DiseaseHomoMapsMethodsModelingModernizationMutatePerformancePlayProblem SolvingProtein EngineeringProtein RegionProteinsRecurrenceRenaissanceResidual stateRoleScientistSequence AlignmentSignal TransductionSiteStructureTechniquesTechnologyTertiary Protein StructureWeightX-Ray Crystallographybasebiophysical techniquescomparativeconvolutional neural networkcostdeep learningdesigndrug developmentempoweredexperienceexperimental studyimprovedlearning networklearning strategylong short term memorymonomernovelnovel strategiesopen source toolprotein data bankprotein functionprotein protein interactionprotein structureprotein structure predictionreconstructionrecurrent neural networkself assemblystructural biologysuccessthree dimensional structurethree-dimensional modelingtool
项目摘要
Project Summary
Predicting the three-dimensional structures of proteins without using known structures from the
Protein Data Bank (PDB) as templates (ab initio) remains a grand challenge of computational
biology. Whereas template-based modeling is now a mature field, ab initio modeling is a
comparatively nascent one, especially for large proteins with complex topologies and multiple
domains. The need for advances in ab initio modeling is evident. A lot of protein sequences do
not have (recognizable) templates in the PDB, and the pace of experimental structure
determination is incommensurate with the scale of the problem. Herein, we propose a new
approach to ab initio modeling that consists of novel deep learning architectures to predict inter-
residue distances and domain boundaries as well as robust, iterative optimization methods to
construct tertiary structures from the predicted distances. This project builds on the success of
our current R01, particularly the outstanding performance of the Cheng group in the 2018
worldwide protein structure prediction experiment – CASP13 – where our MULTICOM suite
ranked among the top three tertiary structure predictors, alongside Google DeepMind’s AlphaFold.
The methods will be implemented as open-source tools for the emerging field of distance-based
ab initio protein structure modeling. We will apply the methods to study protein homo-oligomers
and self-assemblies, based on our novel discovery that the quaternary structure contacts within
homo-oligomers can be predicted by deep learning methods from the co-evolutionary signals
embedded in multiple sequence alignments of protein monomers. Furthermore, we will apply the
methods to predict the folds, functional sites, superfamilies, and protein-protein interactions of
proteins that contain “essential Domains of Unknown Function” (eDUFs), a group of evolutionarily
conserved, essential proteins that represents an important uncharted region of protein
function/fold space. The predictions for a diverse and representative subset of eDUFs will be
experimentally validated through a unique collaboration with the structural biology group of Dr.
Tanner.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianlin Cheng其他文献
Jianlin Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianlin Cheng', 18)}}的其他基金
Acquiring a GPU server to accelerate developing deep learning methods to reconstruct protein structures from cryo-EM data
购买 GPU 服务器以加速开发深度学习方法,以从冷冻电镜数据重建蛋白质结构
- 批准号:
10795465 - 财政年份:2022
- 资助金额:
$ 34.21万 - 项目类别:
Deep learning methods for automated and accurate reconstruction of protein structures from cryo-EM image data
用于从冷冻电镜图像数据自动准确重建蛋白质结构的深度学习方法
- 批准号:
10459829 - 财政年份:2022
- 资助金额:
$ 34.21万 - 项目类别:
Deep learning methods for automated and accurate reconstruction of protein structures from cryo-EM image data
用于从冷冻电镜图像数据自动准确重建蛋白质结构的深度学习方法
- 批准号:
10707036 - 财政年份:2022
- 资助金额:
$ 34.21万 - 项目类别:
Integrated Prediction of Protein Struture at 1D, 2D and 3D Levels
1D、2D 和 3D 水平的蛋白质结构综合预测
- 批准号:
7863766 - 财政年份:2010
- 资助金额:
$ 34.21万 - 项目类别:
Integrated Prediction of Protein Struture at 1D, 2D and 3D Levels
1D、2D 和 3D 水平的蛋白质结构综合预测
- 批准号:
8269738 - 财政年份:2010
- 资助金额:
$ 34.21万 - 项目类别:
Integrated Prediction and Validation of Protein Structures
蛋白质结构的综合预测和验证
- 批准号:
9119094 - 财政年份:2010
- 资助金额:
$ 34.21万 - 项目类别:
Distance-based ab initio protein structure prediction
基于距离的从头算蛋白质结构预测
- 批准号:
10627929 - 财政年份:2010
- 资助金额:
$ 34.21万 - 项目类别:
Integrated Prediction of Protein Struture at 1D, 2D and 3D Levels
1D、2D 和 3D 水平的蛋白质结构综合预测
- 批准号:
8476234 - 财政年份:2010
- 资助金额:
$ 34.21万 - 项目类别:
Distance-based ab initio protein structure prediction
基于距离的从头算蛋白质结构预测
- 批准号:
10251061 - 财政年份:2010
- 资助金额:
$ 34.21万 - 项目类别:
Integrated Prediction of Protein Struture at 1D, 2D and 3D Levels
1D、2D 和 3D 水平的蛋白质结构综合预测
- 批准号:
8059621 - 财政年份:2010
- 资助金额:
$ 34.21万 - 项目类别:
相似海外基金
Cerebral infarction treatment strategy using collagen-like "triple helix peptide" containing functional amino acid sequence
含功能氨基酸序列的类胶原“三螺旋肽”治疗脑梗塞策略
- 批准号:
23K06972 - 财政年份:2023
- 资助金额:
$ 34.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a screening method for functional microproteins independent of amino acid sequence conservation
不依赖氨基酸序列保守性的功能性微生物蛋白筛选方法的建立
- 批准号:
23KJ0939 - 财政年份:2023
- 资助金额:
$ 34.21万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Effects of amino acid sequence and lipids on the structure and self-association of transmembrane helices
氨基酸序列和脂质对跨膜螺旋结构和自缔合的影响
- 批准号:
19K07013 - 财政年份:2019
- 资助金额:
$ 34.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of electron-transfer amino acid sequence probe with an interaction for protein and cell
蛋白质与细胞相互作用的电子转移氨基酸序列探针的构建
- 批准号:
16K05820 - 财政年份:2016
- 资助金额:
$ 34.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of artificial antibody of anti-bitter taste receptor using random amino acid sequence library
利用随机氨基酸序列库开发抗苦味受体人工抗体
- 批准号:
16K08426 - 财政年份:2016
- 资助金额:
$ 34.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The aa15-17 amino acid sequence in the terminal protein domain of HBV polymerase as a viral factor affect-ing in vivo as well as in vitro replication activity of the virus.
HBV聚合酶末端蛋白结构域中的aa15-17氨基酸序列作为影响病毒体内和体外复制活性的病毒因子。
- 批准号:
25461010 - 财政年份:2013
- 资助金额:
$ 34.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Amino acid sequence analysis of fossil proteins using mass spectrometry
使用质谱法分析化石蛋白质的氨基酸序列
- 批准号:
23654177 - 财政年份:2011
- 资助金额:
$ 34.21万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Precise hybrid synthesis of glycoprotein through amino acid sequence-specific introduction of oligosaccharide followed by enzymatic transglycosylation reaction
通过氨基酸序列特异性引入寡糖,然后进行酶促糖基转移反应,精确杂合合成糖蛋白
- 批准号:
22550105 - 财政年份:2010
- 资助金额:
$ 34.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimating selection on amino-acid sequence polymorphisms in Drosophila
果蝇氨基酸序列多态性选择的估计
- 批准号:
NE/D00232X/1 - 财政年份:2006
- 资助金额:
$ 34.21万 - 项目类别:
Research Grant
Construction of a neural network for detecting novel domains from amino acid sequence information only
构建仅从氨基酸序列信息检测新结构域的神经网络
- 批准号:
16500189 - 财政年份:2004
- 资助金额:
$ 34.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)