Integrated Prediction and Validation of Protein Structures
蛋白质结构的综合预测和验证
基本信息
- 批准号:9119094
- 负责人:
- 金额:$ 32.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAmino Acid SequenceAmino AcidsBenchmarkingBiochemicalBioinformaticsBiologicalBiological AssayBiological ProcessBiomedical ResearchCollaborationsCommunitiesComputational BiologyComputer SimulationComputing MethodologiesDataDatabasesDiseaseEnzymesEpilepsyFeedbackFoundationsFutureGenesGenomicsHybridsInheritedInvestigationKnowledgeLearningLinkMachine LearningManualsMapsMetabolic DiseasesMethodsMissense MutationModelingMolecularMolecular ConformationMutagenesisMutateMutationNMR SpectroscopyNuclear Magnetic ResonanceOutputPeptide Sequence DeterminationPositioning AttributeProbabilityProtein ConformationProtein EngineeringProteinsResolutionRoentgen RaysSamplingScienceSiteSoftware ToolsSpace ModelsStatistical ModelsStructureStudy modelsTechniquesTechnologyTertiary Protein StructureTestingTimeTrainingValidationVitamin B6X-Ray Crystallographyaldehyde dehydrogenasesbasecostdata miningdesigndrug discoveryengineering designflexibilityimprovedinnovationlearning networkmarkov modelnovelprotein foldingprotein protein interactionprotein structureprotein structure functionprotein structure predictionpublic health relevanceresearch studystructural biologysuccesstooluser-friendlyweb servicesweb site
项目摘要
DESCRIPTION (provided by applicant): Knowledge of three-dimensional protein structure is indispensable in biomedical research. Protein structure and function are intimately linked, and thus structure facilitates drug discovery, aids investigations of protein-protein interactions, informs mutagenesis analysis, guides protein engineering and the design of new proteins, and provides a foundation for understanding the molecular basis of disease. However, the number of protein sequences available in the genomic era far exceeds the capacity of the main experimental structure determination techniques of X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, resulting in a substantial sequence- structure gap. We address this ever-widening gap by developing and disseminating novel protein structure modeling tools. This renewal project is a new collaboration between experts in computational modeling (Cheng) and experimental structural biology (Tanner). We plan to develop innovative, integrated machine learning (e.g., deep learning), data mining and statistical modeling methods to address major challenges in both template-based structure modeling and template-free (ab initio) structure modeling. We will apply these tools to enzymes in the aldehyde dehydrogenase (ALDH) superfamily, a group of enzymes that are involved in numerous important biological processes and implicated in many diseases due to mutations. The ALDH models will be experimentally validated using X-ray crystallography and biochemical assays. Furthermore, we will combine the modeling power of our structural Input-Output hidden Markov model with experimental small- angle X-ray scattering (SAXS) to predict the tertiary structures of large multi-domain proteins. The integration of computational and experimental sciences in this project positions us uniquely in structure modeling space.
描述(申请人提供):在生物医学研究中,蛋白质三维结构的知识是不可或缺的。蛋白质的结构和功能密切相关,因此蛋白质的结构有助于药物的发现,有助于蛋白质相互作用的研究,有助于突变分析,指导蛋白质工程和新蛋白质的设计,并为理解疾病的分子基础提供基础。然而,基因组时代可获得的蛋白质序列的数量远远超过了X射线结晶学和核磁共振光谱等主要实验结构确定技术的能力,导致了巨大的序列-结构缺口。我们通过开发和传播新的蛋白质结构建模工具来解决这一不断扩大的差距。这个更新项目是计算建模专家(CHEN)和实验结构生物学专家(TANER)之间的新合作。我们计划开发创新的集成机器学习(如深度学习)、数据挖掘和统计建模方法,以应对基于模板的结构建模和无模板(从头开始)结构建模方面的主要挑战。我们将把这些工具应用于乙醛脱氢酶(ALDH)超家族中的酶,这是一组参与许多重要生物学过程并因突变而与许多疾病有关的酶。ALDH模型将使用X射线结晶学和生化分析进行实验验证。此外,我们将结合我们的结构输入输出隐马尔可夫模型的建模能力和实验小角X射线散射(SAXS)来预测大型多域蛋白质的三级结构。在这个项目中,计算科学和实验科学的结合使我们在结构建模领域独树一帜。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianlin Cheng其他文献
Jianlin Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianlin Cheng', 18)}}的其他基金
Acquiring a GPU server to accelerate developing deep learning methods to reconstruct protein structures from cryo-EM data
购买 GPU 服务器以加速开发深度学习方法,以从冷冻电镜数据重建蛋白质结构
- 批准号:
10795465 - 财政年份:2022
- 资助金额:
$ 32.59万 - 项目类别:
Deep learning methods for automated and accurate reconstruction of protein structures from cryo-EM image data
用于从冷冻电镜图像数据自动准确重建蛋白质结构的深度学习方法
- 批准号:
10459829 - 财政年份:2022
- 资助金额:
$ 32.59万 - 项目类别:
Deep learning methods for automated and accurate reconstruction of protein structures from cryo-EM image data
用于从冷冻电镜图像数据自动准确重建蛋白质结构的深度学习方法
- 批准号:
10707036 - 财政年份:2022
- 资助金额:
$ 32.59万 - 项目类别:
Integrated Prediction of Protein Struture at 1D, 2D and 3D Levels
1D、2D 和 3D 水平的蛋白质结构综合预测
- 批准号:
7863766 - 财政年份:2010
- 资助金额:
$ 32.59万 - 项目类别:
Distance-based ab initio protein structure prediction
基于距离的从头算蛋白质结构预测
- 批准号:
10418784 - 财政年份:2010
- 资助金额:
$ 32.59万 - 项目类别:
Integrated Prediction of Protein Struture at 1D, 2D and 3D Levels
1D、2D 和 3D 水平的蛋白质结构综合预测
- 批准号:
8269738 - 财政年份:2010
- 资助金额:
$ 32.59万 - 项目类别:
Distance-based ab initio protein structure prediction
基于距离的从头算蛋白质结构预测
- 批准号:
10627929 - 财政年份:2010
- 资助金额:
$ 32.59万 - 项目类别:
Integrated Prediction of Protein Struture at 1D, 2D and 3D Levels
1D、2D 和 3D 水平的蛋白质结构综合预测
- 批准号:
8476234 - 财政年份:2010
- 资助金额:
$ 32.59万 - 项目类别:
Distance-based ab initio protein structure prediction
基于距离的从头算蛋白质结构预测
- 批准号:
10251061 - 财政年份:2010
- 资助金额:
$ 32.59万 - 项目类别:
Integrated Prediction of Protein Struture at 1D, 2D and 3D Levels
1D、2D 和 3D 水平的蛋白质结构综合预测
- 批准号:
8059621 - 财政年份:2010
- 资助金额:
$ 32.59万 - 项目类别:
相似海外基金
Cerebral infarction treatment strategy using collagen-like "triple helix peptide" containing functional amino acid sequence
含功能氨基酸序列的类胶原“三螺旋肽”治疗脑梗塞策略
- 批准号:
23K06972 - 财政年份:2023
- 资助金额:
$ 32.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a screening method for functional microproteins independent of amino acid sequence conservation
不依赖氨基酸序列保守性的功能性微生物蛋白筛选方法的建立
- 批准号:
23KJ0939 - 财政年份:2023
- 资助金额:
$ 32.59万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Effects of amino acid sequence and lipids on the structure and self-association of transmembrane helices
氨基酸序列和脂质对跨膜螺旋结构和自缔合的影响
- 批准号:
19K07013 - 财政年份:2019
- 资助金额:
$ 32.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of electron-transfer amino acid sequence probe with an interaction for protein and cell
蛋白质与细胞相互作用的电子转移氨基酸序列探针的构建
- 批准号:
16K05820 - 财政年份:2016
- 资助金额:
$ 32.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of artificial antibody of anti-bitter taste receptor using random amino acid sequence library
利用随机氨基酸序列库开发抗苦味受体人工抗体
- 批准号:
16K08426 - 财政年份:2016
- 资助金额:
$ 32.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The aa15-17 amino acid sequence in the terminal protein domain of HBV polymerase as a viral factor affect-ing in vivo as well as in vitro replication activity of the virus.
HBV聚合酶末端蛋白结构域中的aa15-17氨基酸序列作为影响病毒体内和体外复制活性的病毒因子。
- 批准号:
25461010 - 财政年份:2013
- 资助金额:
$ 32.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Amino acid sequence analysis of fossil proteins using mass spectrometry
使用质谱法分析化石蛋白质的氨基酸序列
- 批准号:
23654177 - 财政年份:2011
- 资助金额:
$ 32.59万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Precise hybrid synthesis of glycoprotein through amino acid sequence-specific introduction of oligosaccharide followed by enzymatic transglycosylation reaction
通过氨基酸序列特异性引入寡糖,然后进行酶促糖基转移反应,精确杂合合成糖蛋白
- 批准号:
22550105 - 财政年份:2010
- 资助金额:
$ 32.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimating selection on amino-acid sequence polymorphisms in Drosophila
果蝇氨基酸序列多态性选择的估计
- 批准号:
NE/D00232X/1 - 财政年份:2006
- 资助金额:
$ 32.59万 - 项目类别:
Research Grant
Construction of a neural network for detecting novel domains from amino acid sequence information only
构建仅从氨基酸序列信息检测新结构域的神经网络
- 批准号:
16500189 - 财政年份:2004
- 资助金额:
$ 32.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)