Flexible causal inference methods for estimating longitudinal effects of air pollution on chronic lung disease
用于估计空气污染对慢性肺病纵向影响的灵活因果推理方法
基本信息
- 批准号:10427790
- 负责人:
- 金额:$ 11.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-16 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAirAir PollutantsAir PollutionApplications GrantsAreaAwardBehavioralBiometryBiostatistical MethodsBlack raceBody mass indexChronic Obstructive Pulmonary DiseaseChronic lung diseaseClimateComplementComplexComputer softwareDataData ScienceData SourcesDependenceDiseaseDisease OutcomeDisease ProgressionDoseEnvironmental EpidemiologyEnvironmental HealthEnvironmental ScienceEpidemiologistEpidemiologyEthnic OriginEtiologyEvaluationExposure toFundingGoalsGrantHealthHeterogeneityHispanicImageIndividualInstructionK-Series Research Career ProgramsKnowledgeLinkLiteratureLongitudinal StudiesLongitudinal cohortLongitudinal observational studyLung diseasesMachine LearningMeasurementMeasuresMentorsMetalsMethodologyMethodsModelingMulti-Ethnic Study of AtherosclerosisNitrogen OxidesNot Hispanic or LatinoOutcomeOzoneParticulate MatterPoliciesPolicy AnalysisPollutionProbabilityPulmonary EmphysemaRaceResearchResearch DesignResearch PersonnelRiskScienceShapesSiteStatistical MethodsStatistical ModelsStructural ModelsSupervisionTechniquesTimeTrainingUncertaintyUnited StatesVariantWeightX-Ray Computed Tomographycareercareer developmentcohortcomputer sciencedesignepidemiologic datafine particlesflexibilityintervention effectlung healthmachine learning predictionmortalitynovelopen sourcepollutantpulmonary functionrespiratoryresponsesemiparametricsexsocialstatisticstool
项目摘要
Abstract
This application for a Mentored Quantitative Research Career Development Award has been submitted with
the goal of supporting Dr. Malinsky’s career as a quantitative researcher at the intersection of biostatistics,
epidemiology, and data science for environmental health. The training and research plan build on Dr.
Malinsky’s quantitative interdisciplinary background in statistics and computer science, in particular his
expertise in causal inference and machine learning. The overarching research goal is to develop novel
statistical methods for causal inference that meet important analytical challenges in observational
environmental epidemiology and apply these methods to the study of air pollution and chronic lung diseases,
using data from the longstanding Multi-Ethnic Study of Atherosclerosis (MESA). The methods will be used to
estimate the effects of several ambient air pollutants (ozone, fine particulate matter, and oxides of nitrogen) on
progression of emphysema and decline in lung function over an extended time period. Rigorously investigating
these relationships is important both for advancing our understanding of the etiology and mechanisms
underlying lung disease and to inform regulatory policies concerning pollution concentration levels. The focus
will be on extending and adapting methods for causal inference from observational longitudinal data, which
have been previously developed to accommodate time-varying confounding and quantify uncertainty due to
unmeasured confounding, but never applied to complex longitudinal data on air pollution and chronic lung
disease. These will be used to estimate the long-term lung disease consequences of hypothetical changes to
air pollution exposure levels. Aim 1 of the research plan extends existing methods to address challenges
specific to air pollution epidemiology, namely by exploiting advances in machine learning to estimate robust
exposure propensities and flexible dose-response functions. Aim 2 of the research plan leverages these
methods to investigate hypotheses about the relationships between the aforementioned pollutants and
measures of lung disease in the MESA data and identify vulnerable subpopulations. Aim 3 will extend an
approach to counterfactual sensitivity analysis in the statistical literature that quantifies uncertainty due to
unmeasured confounding to the setting of MESA and apply this approach to the MESA data. The application
delineates plans for mentoring and career development via supervision and didactic instruction in the areas of
air pollution science, environmental epidemiology, climate, longitudinal study design, and other topics relevant
to the construction of credible analysis models for the MESA data. Dr. Malinsky will be supported by a
mentoring team with considerable expertise in air pollution science & measurement, lung disease, biostatistical
methods, and environmental determinants of health. The award will establish Dr. Malinsky as an independent
investigator in this interdisciplinary area and enable him to successfully compete for R01 funding.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Malinsky其他文献
Daniel Malinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Malinsky', 18)}}的其他基金
Flexible causal inference methods for estimating longitudinal effects of air pollution on chronic lung disease
用于估计空气污染对慢性肺病纵向影响的灵活因果推理方法
- 批准号:
10680381 - 财政年份:2022
- 资助金额:
$ 11.3万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
Research Grant














{{item.name}}会员




