Flexible causal inference methods for estimating longitudinal effects of air pollution on chronic lung disease
用于估计空气污染对慢性肺病纵向影响的灵活因果推理方法
基本信息
- 批准号:10680381
- 负责人:
- 金额:$ 10.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-16 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAirAir PollutantsAir PollutionApplications GrantsAreaAwardBehavioralBiometryBiostatistical MethodsBlack raceBody mass indexChronic Obstructive Pulmonary DiseaseChronic lung diseaseClimateComplementComplexComputer softwareDataData ScienceData SourcesDependenceDiseaseDisease OutcomeDisease ProgressionDoseEnvironmental EpidemiologyEnvironmental HealthEnvironmental ScienceEpidemiologistEpidemiologyEthnic OriginEtiologyExposure toFundingGoalsGrantHealthHeterogeneityHispanicImageIndividualInstructionK-Series Research Career ProgramsKnowledgeLinkLiteratureLongitudinal StudiesLongitudinal cohortLongitudinal, observational studyLung diseasesMachine LearningMeasurementMeasuresMentorsMetalsMethodologyMethodsModelingMulti-Ethnic Study of AtherosclerosisNitrogen OxidesNot Hispanic or LatinoOutcomeOzoneParticulate MatterPoliciesPolicy AnalysisPollutionProbabilityPulmonary EmphysemaRaceResearchResearch DesignResearch PersonnelRiskScienceShapesSiteStatistical MethodsStatistical ModelsStructural ModelsSupervisionTechniquesTimeTrainingUncertaintyUnited StatesVariantWeightX-Ray Computed Tomographycareercareer developmentcohortcomputer sciencedesignepidemiologic datafine particlesflexibilityhealth determinantsintervention effectlung healthmachine learning predictionmortalitynovelopen sourcepollutantpulmonary functionrespiratoryresponsesemiparametricsexsocialstatisticstool
项目摘要
Abstract
This application for a Mentored Quantitative Research Career Development Award has been submitted with
the goal of supporting Dr. Malinsky’s career as a quantitative researcher at the intersection of biostatistics,
epidemiology, and data science for environmental health. The training and research plan build on Dr.
Malinsky’s quantitative interdisciplinary background in statistics and computer science, in particular his
expertise in causal inference and machine learning. The overarching research goal is to develop novel
statistical methods for causal inference that meet important analytical challenges in observational
environmental epidemiology and apply these methods to the study of air pollution and chronic lung diseases,
using data from the longstanding Multi-Ethnic Study of Atherosclerosis (MESA). The methods will be used to
estimate the effects of several ambient air pollutants (ozone, fine particulate matter, and oxides of nitrogen) on
progression of emphysema and decline in lung function over an extended time period. Rigorously investigating
these relationships is important both for advancing our understanding of the etiology and mechanisms
underlying lung disease and to inform regulatory policies concerning pollution concentration levels. The focus
will be on extending and adapting methods for causal inference from observational longitudinal data, which
have been previously developed to accommodate time-varying confounding and quantify uncertainty due to
unmeasured confounding, but never applied to complex longitudinal data on air pollution and chronic lung
disease. These will be used to estimate the long-term lung disease consequences of hypothetical changes to
air pollution exposure levels. Aim 1 of the research plan extends existing methods to address challenges
specific to air pollution epidemiology, namely by exploiting advances in machine learning to estimate robust
exposure propensities and flexible dose-response functions. Aim 2 of the research plan leverages these
methods to investigate hypotheses about the relationships between the aforementioned pollutants and
measures of lung disease in the MESA data and identify vulnerable subpopulations. Aim 3 will extend an
approach to counterfactual sensitivity analysis in the statistical literature that quantifies uncertainty due to
unmeasured confounding to the setting of MESA and apply this approach to the MESA data. The application
delineates plans for mentoring and career development via supervision and didactic instruction in the areas of
air pollution science, environmental epidemiology, climate, longitudinal study design, and other topics relevant
to the construction of credible analysis models for the MESA data. Dr. Malinsky will be supported by a
mentoring team with considerable expertise in air pollution science & measurement, lung disease, biostatistical
methods, and environmental determinants of health. The award will establish Dr. Malinsky as an independent
investigator in this interdisciplinary area and enable him to successfully compete for R01 funding.
摘要
本申请为指导定量研究职业发展奖已提交与
支持马林斯基博士作为生物统计学交叉点的定量研究人员的职业生涯的目标,
流行病学和环境健康数据科学。培训和研究计划建立在博士。
马林斯基在统计学和计算机科学方面的定量跨学科背景,特别是他的
在因果推理和机器学习方面的专业知识。总体研究目标是开发新的
因果推理的统计方法,满足重要的分析挑战,在观察
环境流行病学,并将这些方法应用于空气污染和慢性肺部疾病的研究,
使用的数据来自长期的多种族动脉粥样硬化研究(梅萨)。这些方法将用于
估计几种环境空气污染物(臭氧、细颗粒物和氮氧化物)对
肺气肿的进展和肺功能在延长的时间段内的下降。严格调查
这些关系对于促进我们对病因和机制的理解都很重要
潜在的肺部疾病,并告知有关污染浓度水平的监管政策。重点
将扩展和调整方法,从观测纵向数据中进行因果推理,
先前已开发,以适应时变混杂和量化不确定性,
未测量的混杂因素,但从未应用于空气污染和慢性肺疾病的复杂纵向数据
疾病这些将被用来估计长期肺部疾病的后果假设的变化,
空气污染暴露水平。研究计划的目标1扩展了现有方法以应对挑战
具体到空气污染流行病学,即通过利用机器学习的进步来估计鲁棒性
暴露倾向和灵活的剂量反应函数。研究计划的目标2利用了这些
方法来调查关于上述污染物之间的关系的假设,
梅萨数据中的肺部疾病指标,并确定脆弱的亚群。目标3将扩大
统计文献中的反事实敏感性分析方法,该方法量化了
将未测量的混杂因素应用于梅萨的设置,并将该方法应用于梅萨数据。应用
通过以下领域的监督和教学指导,制定指导和职业发展计划:
空气污染科学、环境流行病学、气候、纵向研究设计和其他相关主题
为梅萨数据建立可靠的分析模型。马林斯基博士将得到
在空气污染科学和测量、肺病、生物统计学方面具有相当专业知识的指导团队
方法和健康的环境决定因素。该奖项将确立马林斯基博士作为一个独立的
研究员在这个跨学科领域,使他能够成功地竞争R01资金。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Malinsky其他文献
Daniel Malinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Malinsky', 18)}}的其他基金
Flexible causal inference methods for estimating longitudinal effects of air pollution on chronic lung disease
用于估计空气污染对慢性肺病纵向影响的灵活因果推理方法
- 批准号:
10427790 - 财政年份:2022
- 资助金额:
$ 10.91万 - 项目类别:
相似国自然基金
湍流和化学交互作用对H2-Air-H2O微混燃烧中NO生成的影响研究
- 批准号:51976048
- 批准年份:2019
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
How are plants responding to damage by oxidizing air pollutants?
植物如何应对氧化空气污染物造成的损害?
- 批准号:
DP230100296 - 财政年份:2023
- 资助金额:
$ 10.91万 - 项目类别:
Discovery Projects
Unified assessment of health effects of multiple air pollutants inducing reactive oxygen species production
统一评估多种引起活性氧产生的空气污染物的健康影响
- 批准号:
22KJ0372 - 财政年份:2023
- 资助金额:
$ 10.91万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Air pollutants, heat exposure, and kidney health: A longitudinal study in women in Central America
空气污染物、热暴露和肾脏健康:针对中美洲女性的纵向研究
- 批准号:
10583301 - 财政年份:2023
- 资助金额:
$ 10.91万 - 项目类别:
Prenatal Traffic-Related Air Pollutants, Placental Epitranscriptomics, and Child Cognition
产前交通相关空气污染物、胎盘表观转录组学和儿童认知
- 批准号:
10366988 - 财政年份:2022
- 资助金额:
$ 10.91万 - 项目类别:
Analysis of the protective effect of metallothioneins against lung injury caused by air pollutants.
金属硫蛋白对空气污染物所致肺损伤的保护作用分析
- 批准号:
22K06588 - 财政年份:2022
- 资助金额:
$ 10.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Disrupting Noxious Synergies of Indoor Air Pollutants and their Impact in Childhood Health and Wellbeing, using Advanced Intelligent Multisensing and Green Interventions
利用先进的智能多传感和绿色干预措施,破坏室内空气污染物的有害协同作用及其对儿童健康和福祉的影响
- 批准号:
10051924 - 财政年份:2022
- 资助金额:
$ 10.91万 - 项目类别:
EU-Funded
Development and/or evaluation of emission factors for Odour, air pollutants, greenhouse gas emissions and air quality impact assessment for industrial and municipal sources in cold region
寒冷地区工业和市政源恶臭、空气污染物、温室气体排放排放因子的制定和/或评价以及空气质量影响评价
- 批准号:
RGPIN-2019-07299 - 财政年份:2022
- 资助金额:
$ 10.91万 - 项目类别:
Discovery Grants Program - Individual
Exposure to Ambient Air Pollutants, Circulating microRNAs, and Hepatic Fat Fraction Among Young Adults
年轻人接触环境空气污染物、循环 microRNA 和肝脂肪分数
- 批准号:
10537895 - 财政年份:2022
- 资助金额:
$ 10.91万 - 项目类别:
Novel Approaches for Improving Inflammation Resolution Following Chronic Exposure to Air Pollutants
改善长期接触空气污染物后炎症消退的新方法
- 批准号:
10348421 - 财政年份:2022
- 资助金额:
$ 10.91万 - 项目类别:
Prenatal Traffic-Related Air Pollutants, Placental Epitranscriptomics, and Child Cognition
产前交通相关空气污染物、胎盘表观转录组学和儿童认知
- 批准号:
10589926 - 财政年份:2022
- 资助金额:
$ 10.91万 - 项目类别:














{{item.name}}会员




