Identification of Trauma-related Features in EHR Data for Patients with Psychosis and Mood Disorders
精神病和情绪障碍患者 EHR 数据中创伤相关特征的识别
基本信息
- 批准号:10427433
- 负责人:
- 金额:$ 24.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAdultArchitectureBrainChild AbuseChild Sexual AbuseClinicalClinical TrialsCollaborationsCommunitiesComplexDataData ElementDatabasesDevelopmentDimensionsElectronic Health RecordEventExposure toFemaleFrequenciesFutureGoldGuidelinesHealth Care CostsHeterogeneityHospitalsHumanIndividualInstitutionJointsKnowledgeLabelLifeLinkMachine LearningManualsMassachusettsMediationMental disordersMethodsModelingMood DisordersNamesNatural Language ProcessingOutcomePatientsPhenotypePopulationPrevalencePsychopathologyPsychosesPsychotic DisordersPsychotic Mood DisordersRecording of previous eventsRelapseResearchResearch Domain CriteriaResearch PersonnelResistanceResourcesRiskSocietiesSourceStandardizationSubgroupSubstance abuse problemSuicideSupervisionSymptomsTestingTherapeutic InterventionTimeTrainingTraumaTreatment outcomeValidationbaseclinical heterogeneityclinical investigationclinically significantcomputing resourcescost effectivedata modelingdata registrydata reusedata standardsdesigndiagnostic strategydisabilityemotional abuseexperiencehospital readmissioninsightmachine learning methodmachine learning modelmalenatural languagenew therapeutic targetpatient health informationpatient stratificationpediatric traumapersonalized medicinephysical abuserepositorysevere psychiatric disorderstructured datatherapy resistanttooltreatment planningunstructured data
项目摘要
Project Summary
Psychotic and mood disorders represent a major driver of disability as well as health care cost. There is
considerable clinical heterogeneity among patients. Developing clinically implementable machine learning (ML)
tools to enable accurate patient stratification is critically important in order to augment effective personalized
treatment plans. Among the factors contributing to heterogeneity, childhood trauma is an under-recognized
source. The prevalence of childhood trauma is significant in adults with psychiatric disorders. Robust evidence
shows that: i) individuals exposed to childhood abuse are 2-3 times more likely to develop a psychiatric disorder
later in life, particularly psychosis; ii) childhood traumas impact critical windows of brain development and can
trigger the onset of psychosis; and iii) among patients with psychotic and mood disorders, childhood trauma
influences psychopathology, leading to more severe symptoms, poorer long-term outcomes (longer and higher
rate of relapses or rehospitalization), associated with substance abuse, and are often treatment resistant and
function poorly in society. Although evidence clearly indicates that childhood trauma contributes to psychiatric
risk and poor treatment outcomes, large-scale computational approaches to stratify subpopulations, extract
trauma features (e.g., frequency, type), and examine the links or the impact of trauma features on
psychopathology and treatment outcome have yet to be developed. We propose to create gold standard
annotations from Electronic health records (EHRs) and to leverage natural language processing (NLP) and ML
methods to develop a standardized re-useable data model for automatically extracting trauma-related features,
complex concepts, and symptom dimensions from EHRs. We will train and evaluate a semi-supervised NLP
model, which is built as a joint sequence model that can both identify named entities as well as extract the
relations between them. We will apply multiple strategies to validate the robustness of our model. Our proposed
NLP model is essentially a “computational version of a chart review” tool, designed to mimic human chart review
but performed automatically with the ability to scale. We will use this model to stratify psychosis subgroups (with
or without childhood trauma history) and to correlate among the extracted features with important clinical
outcome variables. Importantly, the annotation guidelines, corpus, and the data model developed by us will be
valuable resources to researchers in the field. The study builds on existing collaborations between a team
experienced in psychiatric phenotyping and application of EHRs, and a team active in developing and applying
emerging methods in ML to natural language data. The model architecture developed in this application will lay
the groundwork for a future clinical trial application.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mei-Hua Hall其他文献
Mei-Hua Hall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mei-Hua Hall', 18)}}的其他基金
Modeling Temporality with Natural Language Processing to Predict Readmission Risk of Patients with Psychosis
使用自然语言处理对时序进行建模以预测精神病患者的再入院风险
- 批准号:
10445583 - 财政年份:2022
- 资助金额:
$ 24.54万 - 项目类别:
Modeling Temporality with Natural Language Processing to Predict Readmission Risk of Patients with Psychosis
使用自然语言处理对时序进行建模以预测精神病患者的再入院风险
- 批准号:
10669207 - 财政年份:2022
- 资助金额:
$ 24.54万 - 项目类别:
Identification of Trauma-related Features in EHR Data for Patients with Psychosis and Mood Disorders
精神病和情绪障碍患者 EHR 数据中创伤相关特征的识别
- 批准号:
10296954 - 财政年份:2021
- 资助金额:
$ 24.54万 - 项目类别:
Neurobiological Markers as Predictors of Later Functional Outcome in First Episode Psychosis
神经生物学标记物作为首发精神病后期功能结果的预测因子
- 批准号:
10376420 - 财政年份:2020
- 资助金额:
$ 24.54万 - 项目类别:
Functional Characterization of Risk Variants for Psychotic Illness in the GWAS Er
GWAS Er 中精神疾病风险变异的功能特征
- 批准号:
8078853 - 财政年份:2010
- 资助金额:
$ 24.54万 - 项目类别:
Functional Characterization of Risk Variants for Psychotic Illness in the GWAS Er
GWAS Er 中精神疾病风险变异的功能特征
- 批准号:
8641415 - 财政年份:2010
- 资助金额:
$ 24.54万 - 项目类别:
Functional Characterization of Risk Variants for Psychotic Illness in the GWAS Er
GWAS Er 中精神疾病风险变异的功能特征
- 批准号:
8279387 - 财政年份:2010
- 资助金额:
$ 24.54万 - 项目类别:
Functional Characterization of Risk Variants for Psychotic Illness in the GWAS Er
GWAS Er 中精神疾病风险变异的功能特征
- 批准号:
7892862 - 财政年份:2010
- 资助金额:
$ 24.54万 - 项目类别:
Functional Characterization of Risk Genes for Psychotic Illness in the GWAS Era
GWAS 时代精神疾病风险基因的功能表征
- 批准号:
8444577 - 财政年份:2010
- 资助金额:
$ 24.54万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 24.54万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 24.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 24.54万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 24.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 24.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 24.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




