Identification of Trauma-related Features in EHR Data for Patients with Psychosis and Mood Disorders
精神病和情绪障碍患者 EHR 数据中创伤相关特征的识别
基本信息
- 批准号:10296954
- 负责人:
- 金额:$ 22.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAdultArchitectureBrainChild AbuseChild Sexual AbuseClinicalClinical TrialsCollaborationsCommunitiesComplexDataData ElementDatabasesDevelopmentDiagnosticDimensionsElectronic Health RecordEventExposure toFemaleFrequenciesFutureGoldGuidelinesHealth Care CostsHeterogeneityHospitalsHumanIndividualInstitutionJointsKnowledgeLabelLifeLinkMachine LearningManualsMassachusettsMediationMental disordersMethodsModelingMood DisordersNamesNatural Language ProcessingOutcomePatientsPhenotypePopulationPrevalencePsychopathologyPsychosesPsychotic DisordersPsychotic Mood DisordersRecording of previous eventsRelapseResearchResearch Domain CriteriaResearch PersonnelResistanceResourcesRiskSocietiesSourceStandardizationSubgroupSubstance abuse problemSuicideSupervisionSymptomsTestingTherapeutic InterventionTimeTrainingTraumaTreatment outcomeValidationbaseclinical heterogeneityclinical investigationclinically significantcomputing resourcescost effectivedata modelingdata registrydata reusedata standardsdesigndisabilityemotional abuseexperiencehospital readmissioninsightmachine learning methodmalenatural languagenew therapeutic targetpatient health informationpatient stratificationpediatric traumapersonalized medicinephysical abuserepositorysevere psychiatric disorderstructured datatherapy resistanttooltreatment planningunstructured data
项目摘要
Project Summary
Psychotic and mood disorders represent a major driver of disability as well as health care cost. There is
considerable clinical heterogeneity among patients. Developing clinically implementable machine learning (ML)
tools to enable accurate patient stratification is critically important in order to augment effective personalized
treatment plans. Among the factors contributing to heterogeneity, childhood trauma is an under-recognized
source. The prevalence of childhood trauma is significant in adults with psychiatric disorders. Robust evidence
shows that: i) individuals exposed to childhood abuse are 2-3 times more likely to develop a psychiatric disorder
later in life, particularly psychosis; ii) childhood traumas impact critical windows of brain development and can
trigger the onset of psychosis; and iii) among patients with psychotic and mood disorders, childhood trauma
influences psychopathology, leading to more severe symptoms, poorer long-term outcomes (longer and higher
rate of relapses or rehospitalization), associated with substance abuse, and are often treatment resistant and
function poorly in society. Although evidence clearly indicates that childhood trauma contributes to psychiatric
risk and poor treatment outcomes, large-scale computational approaches to stratify subpopulations, extract
trauma features (e.g., frequency, type), and examine the links or the impact of trauma features on
psychopathology and treatment outcome have yet to be developed. We propose to create gold standard
annotations from Electronic health records (EHRs) and to leverage natural language processing (NLP) and ML
methods to develop a standardized re-useable data model for automatically extracting trauma-related features,
complex concepts, and symptom dimensions from EHRs. We will train and evaluate a semi-supervised NLP
model, which is built as a joint sequence model that can both identify named entities as well as extract the
relations between them. We will apply multiple strategies to validate the robustness of our model. Our proposed
NLP model is essentially a “computational version of a chart review” tool, designed to mimic human chart review
but performed automatically with the ability to scale. We will use this model to stratify psychosis subgroups (with
or without childhood trauma history) and to correlate among the extracted features with important clinical
outcome variables. Importantly, the annotation guidelines, corpus, and the data model developed by us will be
valuable resources to researchers in the field. The study builds on existing collaborations between a team
experienced in psychiatric phenotyping and application of EHRs, and a team active in developing and applying
emerging methods in ML to natural language data. The model architecture developed in this application will lay
the groundwork for a future clinical trial application.
项目摘要
精神病和情绪障碍是导致残疾的主要原因,也是医疗费用的主要因素。的确有
患者之间存在相当大的临床异质性。开发临床可实现的机器学习(ML)
实现准确的患者分层的工具对于增强有效的个性化至关重要
治疗计划。在导致异质性的因素中,童年创伤是一个被低估的因素。
消息来源。在患有精神障碍的成年人中,童年创伤的患病率很高。有力的证据
表明:i)遭受儿童期虐待的人患精神障碍的可能性是前者的2-3倍
晚年,特别是精神病;ii)童年创伤影响大脑发育的关键窗口,并可能
触发精神病的发病;以及iii)在患有精神病和情绪障碍的患者中,童年创伤
影响精神病理学,导致更严重的症状,更差的长期结果(更长和更高
复发率或再住院率),与药物滥用有关,通常具有治疗耐药性和
在社会中的作用很差。尽管有证据清楚地表明,童年创伤会导致精神疾病
风险和不良治疗结果,分层的大规模计算方法,摘录
创伤特征(例如,频率、类型),并检查创伤特征对
精神病理学和治疗结果还有待开发。我们建议创建金本位制
来自电子健康记录(EHR)的注释,并利用自然语言处理(NLP)和ML
方法开发标准化的可重复使用的数据模型以自动提取创伤相关特征,
来自EHR的复杂概念和症状维度。我们将训练和评估一个半监督的NLP
模型,它被构建为联合序列模型,既可以识别命名实体,也可以提取
他们之间的关系。我们将应用多种策略来验证我们模型的健壮性。我们的建议
NLP模型本质上是一个“计算版本的图表评审”工具,旨在模仿人类的图表评审
但可以自动执行,并具有扩展能力。我们将使用这个模型来对精神病亚群进行分层(与
或没有童年创伤病史),并将提取的特征与重要的临床相关
结果变量。重要的是,我们开发的注释指南、语料库和数据模型将是
为该领域的研究人员提供宝贵的资源。这项研究建立在一个团队之间现有的合作基础上
在精神病学表型和EHR的应用方面经验丰富,并拥有一支积极开发和应用的团队
自然语言数据ML中的新兴方法。在此应用程序中开发的模型体系结构将
为将来的临床试验应用奠定了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mei-Hua Hall其他文献
Mei-Hua Hall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mei-Hua Hall', 18)}}的其他基金
Modeling Temporality with Natural Language Processing to Predict Readmission Risk of Patients with Psychosis
使用自然语言处理对时序进行建模以预测精神病患者的再入院风险
- 批准号:
10445583 - 财政年份:2022
- 资助金额:
$ 22.06万 - 项目类别:
Modeling Temporality with Natural Language Processing to Predict Readmission Risk of Patients with Psychosis
使用自然语言处理对时序进行建模以预测精神病患者的再入院风险
- 批准号:
10669207 - 财政年份:2022
- 资助金额:
$ 22.06万 - 项目类别:
Identification of Trauma-related Features in EHR Data for Patients with Psychosis and Mood Disorders
精神病和情绪障碍患者 EHR 数据中创伤相关特征的识别
- 批准号:
10427433 - 财政年份:2021
- 资助金额:
$ 22.06万 - 项目类别:
Neurobiological Markers as Predictors of Later Functional Outcome in First Episode Psychosis
神经生物学标记物作为首发精神病后期功能结果的预测因子
- 批准号:
10376420 - 财政年份:2020
- 资助金额:
$ 22.06万 - 项目类别:
Functional Characterization of Risk Variants for Psychotic Illness in the GWAS Er
GWAS Er 中精神疾病风险变异的功能特征
- 批准号:
8078853 - 财政年份:2010
- 资助金额:
$ 22.06万 - 项目类别:
Functional Characterization of Risk Variants for Psychotic Illness in the GWAS Er
GWAS Er 中精神疾病风险变异的功能特征
- 批准号:
8641415 - 财政年份:2010
- 资助金额:
$ 22.06万 - 项目类别:
Functional Characterization of Risk Variants for Psychotic Illness in the GWAS Er
GWAS Er 中精神疾病风险变异的功能特征
- 批准号:
8279387 - 财政年份:2010
- 资助金额:
$ 22.06万 - 项目类别:
Functional Characterization of Risk Variants for Psychotic Illness in the GWAS Er
GWAS Er 中精神疾病风险变异的功能特征
- 批准号:
7892862 - 财政年份:2010
- 资助金额:
$ 22.06万 - 项目类别:
Functional Characterization of Risk Genes for Psychotic Illness in the GWAS Era
GWAS 时代精神疾病风险基因的功能表征
- 批准号:
8444577 - 财政年份:2010
- 资助金额:
$ 22.06万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 22.06万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 22.06万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 22.06万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 22.06万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 22.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 22.06万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 22.06万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 22.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 22.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 22.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




