Clinical outcomes for asynchronous teledermatology
异步远程皮肤病学的临床结果
基本信息
- 批准号:10426001
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAreaArtificial IntelligenceCaringCatalogsCategoriesClinicClinicalComputerized Medical RecordConsultConsultationsDataData SetDermatologicDermatologistDermatologyDevelopmentDiagnosisDiagnosticDiagnostic ProcedureDistantEczemaEffectivenessElectronic Health RecordEventHealthcare SystemsLanguageLearningMachine LearningManualsMeasuresMedical RecordsMethodologyMethodsModelingMonitorNatural Language ProcessingOutcomeOutcome MeasureOutcomes ResearchOutputPathway interactionsPatientsPerformancePersonsPoliciesPrimary Health CareProcessProviderProxyPsoriasisQuality of CareRecommendationRural CommunitySafetySan FranciscoServicesSkinSkin CareSkin NeoplasmsSurveysSystemTestingTextTherapeutic procedureTimeTrainingTranslatingTriageUnited States Department of Veterans AffairsVeteransVeterans Health AdministrationWorkbasecare providersclinical outcome measuresclinically significantdashboarddata warehousefollow-upforestimprovedinnovationnovelpatient health informationpatient safetyprogramsrelative effectivenessresponseskin disorderstructured datateledermatologytelehealthtooltreatment as usual
项目摘要
Background: Store-and-forward teledermatology is a significant part of Department of Veterans Affairs’
telehealth portfolio. While considerable evidence supports teledermatology’s potential to provide timely access
to expert dermatologic care, its effectiveness in achieving clinical outcomes that are equivalent to usual in-
person care has not been as well documented due to the lack of objective outcome measures for many skin
diseases. Clinicians typically document skin diseases using non-standardized qualitative language. Manual
review to extract meaningful outcomes data from relatively unstructured text is typically prohibitive.
Significance/Impact: Natural language processing (NLP) offers a previously unexplored approach to
objectively and systematically identify relevant text in the electronic medical record to gauge patients’ clinical
responses following either in-person dermatology and asynchronous teledermatology consultation. This
project will leverage NLP to follow clinical courses of important skin conditions in the medical record and to
compare the outcomes and effectiveness of teledermatology relative to usual office-based dermatology
consultation. It will also serve as a test for other outcome measures such as access times that are often
assumed to be proxies for quality of care for Veterans. The results may help influence VA telehealth strategy
and policies to enhance access of patients to high quality skin care and to improve patient safety.
Innovation: This project represents a novel application of NLP methods to understand how key clinicians
document skin conditions and to provide a large-scale, systematic and rigorous assessment of
teledermatology’s effectiveness in caring for Veterans with a variety of skin diseases. The project will also
result in NLP systems which may be translatable to create practical operational quality management tools for
monitoring the quality of follow-up care of both dermatology and teledermatology patients in VA.
Specific Aims: Aim 1 will survey expert and non-expert clinicians to learn how each group evaluates and
documents clinical change in five common skin diagnostic categories. We will test novel annotation methods,
and identify differences between clinician groups in annotated survey responses. Aim 2 will use our annotated
data sets to train and validate NLP models to extract concepts and relationships for our five diagnostic
categories from actual VA clinical notes. This information will be used to create a document classifier capable
of assigning a clinical change status to follow-up notes. Aim 3 will integrate output from our NLP tools to
assign an overall clinical outcome to dermatology and teledermatology referrals. Other important clinical
events and activities available as structured data will be correlated with NLP outcomes to further interpret their
significance. Commonly used access outcome measures will also be compared as a test of their validity.
Methodology: Aim 1 will survey dermatologists and primary care providers to annotate and compare their
responses. Aims 2 and 3 will create trained and validated NLP tools to assign condition and outcome status to
actual clinical notes. Aim 3 will use our tools to compare clinical outcomes following teledermatology and
dermatology consultation and will will utilize the VA Corporate Data Warehouse to obtain structured data on
other key clinical events and access measures.
Implementation/Next Steps: The NLP models that result from this project may be extendable beyond routine
in-person and teledermatology care to generally track clinical course outcomes related to other forms of
telehealth such as dermatology e-consults and video telehealth. In addition, the models may be adaptable to
create a practical dashboard tool to allow providers and quality management staff to monitor the effectiveness
and quality of teledermatology delivered to Veteran patients.
背景:存储转发远程皮肤病学是退伍军人事务部的重要组成部分
远程医疗产品组合。虽然相当多的证据支持远程皮肤病提供及时访问的潜力
对于皮肤科专家来说,它在实现与通常情况下相当的临床结果方面的有效性--
由于缺乏对许多皮肤的客观结果衡量标准,个人护理没有得到很好的记录
疾病。临床医生通常使用非标准化的定性语言记录皮肤病。人工
从相对无结构的文本中提取有意义的结果数据的审查通常是令人望而却步的。
重要性/影响:自然语言处理(NLP)提供了一种以前未曾探索过的方法
客观、系统地识别电子病历中的相关文本,以评估患者的临床
面对面皮肤科会诊和异步远程皮肤科会诊后的反应。这
项目将利用NLP跟踪医疗记录中重要皮肤病的临床过程,并
比较远程皮肤科与普通办公室皮肤科的结果和效果
咨询。它还将作为对其他结果衡量标准的测试,例如访问时间通常
被认为是退伍军人护理质量的代理。这一结果可能有助于影响退伍军人管理局的远程医疗战略
以及加强患者获得高质量皮肤护理和改善患者安全的政策。
创新:该项目代表了NLP方法的新应用,以了解关键临床医生如何
记录皮肤状况,并提供大规模、系统和严格的
远程皮肤科在照顾患有各种皮肤病的退伍军人方面的有效性。该项目还将
产生可翻译的NLP系统,以创建实用的可操作的质量管理工具
监测退伍军人事务部皮肤科和远程皮肤科患者的随访护理质量。
具体目标:Aim 1将对专家和非专家临床医生进行调查,以了解每个小组如何评估和
记录五种常见皮肤诊断类别的临床变化。我们将测试新的注释方法,
并在带注释的调查答复中确定临床医生组之间的差异。Aim 2将使用我们的注释
用于训练和验证NLP模型的数据集,以提取用于五项诊断的概念和关系
根据实际退伍军人管理局的临床记录进行分类。此信息将用于创建能够
将临床变更状态分配给后续记录。AIM 3将把我们的NLP工具的输出整合到
为皮肤病和远程皮肤病转诊分配总体临床结果。其他重要的临床
以结构化数据形式提供的事件和活动将与NLP结果相关联,以进一步解释其
意义。还将比较常用的准入结果衡量标准,以检验其有效性。
方法:Aim 1将对皮肤科医生和初级保健提供者进行调查,以注释和比较他们的
回应。AIMS 2和3将创建经过培训和验证的NLP工具,以将条件和结果状态分配给
实际的临床记录。AIM 3将使用我们的工具来比较远程皮肤病和
皮肤科咨询,并将利用退伍军人管理局公司数据仓库获得结构化数据
其他关键临床事件和准入措施。
实施/下一步:该项目产生的NLP模型可能会在常规之外进行扩展
面对面和远程皮肤病护理,一般跟踪与其他形式的
远程保健,如皮肤科电子会诊和视频远程保健。此外,这些模型可能适用于
创建实用的仪表板工具,使供应商和质量管理人员能够监控有效性
以及向退伍军人患者提供远程皮肤科的质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DENNIS H OH其他文献
DENNIS H OH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DENNIS H OH', 18)}}的其他基金
Improving dermatology access by direct-to-patient teledermatology and computer-assisted diagnosis
通过直接面向患者的远程皮肤病学和计算机辅助诊断改善皮肤病学的可及性
- 批准号:
10317682 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Improving dermatology access by direct-to-patient teledermatology and computer-assisted diagnosis
通过直接面向患者的远程皮肤病学和计算机辅助诊断改善皮肤病学的可及性
- 批准号:
10496557 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Teledermatology mobile apps: Implementation and impact on Veterans' access to dermatology
远程皮肤科移动应用程序:实施及其对退伍军人获得皮肤科的影响
- 批准号:
9981444 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Role of p53 homologs in DNA repair in human keratinocytes
p53 同源物在人类角质形成细胞 DNA 修复中的作用
- 批准号:
7797798 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Role of p53 homologs in DNA repair in human keratinocytes
p53 同源物在人类角质形成细胞 DNA 修复中的作用
- 批准号:
7911825 - 财政年份:2009
- 资助金额:
-- - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




