Epigenomic regulation of oxidative stress-producing innate immunity in neuroinflammation
神经炎症中氧化应激产生的先天免疫的表观基因组调控
基本信息
- 批准号:10429847
- 负责人:
- 金额:$ 12.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:Advisory CommitteesBindingBiological AssayCRISPR interferenceCaliforniaCandidate Disease GeneCellsChIP-seqChromatinClustered Regularly Interspaced Short Palindromic RepeatsCoculture TechniquesCommunitiesComplexCoupledDataData SetDevelopmentDiseaseDisease ProgressionElementsEnhancersEnvironmentEpigenetic ProcessExperimental Autoimmune EncephalomyelitisExperimental DesignsFacultyFailureFluorescent in Situ HybridizationFoundationsFutureGene Expression ProfileGene TargetingGenesGenetic TranscriptionGenome engineeringGenomicsGoalsHistonesImmuneImmune System DiseasesImmune responseImmunohistochemistryIn VitroInflammationInflammatoryInnate Immune ResponseInnate Immune SystemInstitutesInterventionInvestigationLaboratoriesLaboratory ResearchLeadershipLinkMacrophage ActivationMapsMediatingMentorsMethodsMicrogliaModelingMolecularMultiple SclerosisMusNADPH OxidaseNatural ImmunityNerve DegenerationNeuraxisNeurodegenerative DisordersNeuronsNucleic Acid Regulatory SequencesOutcomes ResearchOxidative RegulationOxidative StressPathogenesisPathogenicityPathologicPeripheralPharmaceutical PreparationsPhasePhenotypePreventionProcessProductionRNAReactive Oxygen SpeciesRegulator GenesRegulatory ElementRelapseReporterResearchResourcesRoleSan FranciscoSignal PathwaySpinal CordTestingTherapeuticTrainingTranslatingTransposaseUniversitiesbasebiological adaptation to stressbrain tissuecareercareer developmentcell typechromatin immunoprecipitationepigenomeepigenomicsgene repressiongenetic signaturegenomic locushistone modificationimmune functionin vivoinnovationloss of functionmacrophagemind controlmouse modelmultiple sclerosis treatmentnervous system disorderneuroinflammationneurotoxicneurovascularnovelnovel therapeutic interventionnovel therapeuticsoxidative damagepreventprogramspromotersingle moleculetherapeutic candidatetherapeutic targettranscription factor
项目摘要
PROJECT SUMMARY / ABSTRACT
Oxidative stress is a central part of innate immune-induced neurodegeneration in neurological disorders
including multiple sclerosis (MS). However, the molecular mechanisms regulating oxidative stress gene circuits
to promote neurotoxic immune responses remain poorly characterized. Emerging evidence supports a role for
the epigenome in tightly regulating immune cell gene activity in MS. Yet, the epigenomic landscape and function
in prooxidant, neurotoxic central nervous system (CNS) innate immune cells in MS remains unknown. Thus,
discovery of drugs capable of selectively suppressing immune-driven neurodegeneration has been hindered by
lack of molecular understanding of neurotoxic functions of CNS innate immune cells. The ultimate goal of this
project is to define the regulatory landscape of prooxidant immune cells and identify mechanisms that translate
epigenetic aberrations into innate-immune driven neurodegeneration for devising novel therapeutic interventions
for MS. Our preliminary data discovered a molecular convergence of neurotoxic microglia and peripheral
macrophages to a core oxidative stress gene signature in MS model. By applying an innovative experimental
design with cutting-edge methods, this proposal aims to define the epigenetic and transcriptional components of
oxidative stress-producing innate immune cells in a mouse model of neuroinflammation for MS through unbiased
profiling of the open chromatin landscapes (Aim 1) and histone modifications (Aim 2). These molecular
characterizations will identify key MS-related regulatory elements that will be functionally validated in vitro and
in vivo with CRISPR interference assays (Aim 3). This project will provide a foundational epigenomic outlook on
the molecular circuits governing prooxidant, neurotoxic immune responses in neuroinflammatory disease, and
the research outcomes may reveal candidates for the development of new treatments for innate immune-
mediated oxidative injury in MS and related conditions. The comprehensive training plan will enable the PI to
achieve his career goal of launching a successful independent research laboratory dedicated to studying
epigenomic mechanisms contributing to immune dysfunction in MS for targeted treatments. The MOSAIC UE5
mentoring, leadership, and diversity training will facilitate his transition to independence and enable the PI to
enhance diversity in the biomedical workforce in the R00 phase and beyond. As a mentee in Dr. Katerina
Akassoglou’s laboratory, a leader in neurovascular and immune mechanisms of MS pathogenesis, at the
esteemed academic environment of Gladstone Institutes and University of California, San Francisco, the PI will
obtain new training in functional epigenomics and CRISPR genome engineering during the K99 phase. The PI’s
training and career development will be bolstered through an advisory committee of faculty with related expertise;
and the PI’s participation in didactic activities such as coursework in epigenomics and seminars, will collectively
allow the PI to complete this project and integrate these approaches for making meritorious contributions to the
fields of MS and epigenomics in future independent research.
项目概要/摘要
氧化应激是神经系统疾病中先天免疫诱导的神经变性的核心部分
包括多发性硬化症(MS)。然而,调节氧化应激基因回路的分子机制
促进神经毒性免疫反应的机制仍知之甚少。新出现的证据支持
表观基因组在多发性硬化症中严格调节免疫细胞基因活性。然而,表观基因组景观和功能
中枢神经系统(CNS)先天免疫细胞中的促氧化剂、神经毒性物质在多发性硬化症中的作用尚不清楚。因此,
能够选择性抑制免疫驱动的神经变性的药物的发现受到了阻碍
缺乏对中枢神经系统先天免疫细胞的神经毒性功能的分子理解。此次活动的最终目的
该项目的目的是定义促氧化免疫细胞的调控格局,并确定转化的机制
表观遗传畸变导致先天免疫驱动的神经变性,以设计新的治疗干预措施
对于女士。我们的初步数据发现神经毒性小胶质细胞和外周细胞的分子融合
MS 模型中巨噬细胞对核心氧化应激基因特征的影响。通过应用创新实验
采用尖端方法设计,该提案旨在定义表观遗传和转录成分
通过无偏倚在多发性硬化症神经炎症小鼠模型中产生氧化应激的先天免疫细胞
开放染色质景观(目标 1)和组蛋白修饰(目标 2)的分析。这些分子
表征将确定与 MS 相关的关键调控元件,这些元件将在体外进行功能验证
体内 CRISPR 干扰测定(目标 3)。该项目将提供基本的表观基因组前景
神经炎症疾病中控制促氧化剂、神经毒性免疫反应的分子回路,以及
研究结果可能揭示开发先天免疫新疗法的候选者
介导多发性硬化症及相关病症中的氧化损伤。全面的培训计划将使 PI 能够
实现他的职业目标,即创办一个成功的独立研究实验室,致力于研究
导致多发性硬化症免疫功能障碍的表观基因组机制,用于靶向治疗。 UE5马赛克
指导、领导力和多元化培训将有助于他向独立过渡,并使 PI 能够
增强 R00 阶段及以后生物医学劳动力的多样性。作为卡特琳娜博士的学员
Akassoglou 的实验室是多发性硬化症发病机制的神经血管和免疫机制领域的领导者,
格拉德斯通研究所和加州大学旧金山分校享有盛誉的学术环境,PI 将
在 K99 阶段获得功能表观基因组学和 CRISPR 基因组工程方面的新培训。 PI 的
将通过一个由具有相关专业知识的教师组成的咨询委员会来支持培训和职业发展;
PI 参与教学活动,例如表观基因组学课程和研讨会,将共同
允许 PI 完成该项目并整合这些方法,为
未来独立研究的 MS 和表观基因组学领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew S Mendiola其他文献
Andrew S Mendiola的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew S Mendiola', 18)}}的其他基金
Epigenomic regulation of oxidative stress-producing innate immunity in neuroinflammation
神经炎症中氧化应激产生的先天免疫的表观基因组调控
- 批准号:
10604358 - 财政年份:2022
- 资助金额:
$ 12.09万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 12.09万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 12.09万 - 项目类别:
Continuing Grant
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 12.09万 - 项目类别:
Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 12.09万 - 项目类别:
Fellowship
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 12.09万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 12.09万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 12.09万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 12.09万 - 项目类别:
Research Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 12.09万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 12.09万 - 项目类别:
Discovery Projects