Advancing Real-Time Suicide Risk Detection Through the Digital Phenotyping Smartphone Application Screenomics
通过数字表型智能手机应用程序推进实时自杀风险检测 Screenomics
基本信息
- 批准号:10428874
- 负责人:
- 金额:$ 23.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-04 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressCellular PhoneCessation of lifeClinicalCommunicationConsumptionDataData CollectionDetectionDictionaryDimensionsEcological momentary assessmentEthicsExploratory/Developmental Grant for Diagnostic Cancer ImagingFeeling suicidalGenerationsGoalsHealthHeterogeneityIndividualInternetInterventionKnowledgeLinkLonelinessMachine LearningMeasurementMethodologyMethodsMissionModalityModelingMonitorNational Institute of Mental HealthNatureNegative ValenceOutcomeParticipantPersonsPhenotypePositive ValencePrivacyProxyPsychophysiologyPublic HealthResearchResolutionRiskRisk BehaviorsRisk FactorsSamplingSampling StudiesSocial InteractionSourceSuicideSuicide preventionTechniquesTextText MessagingTimeUnited States National Institutes of HealthWorkactigraphybasebehavior predictiondata streamsdeep learningdigitalexperiencehigh riskimprovedinnovationmortalitynovelpreventprospectivereducing suicidesmartphone Applicationsocial mediasocial relationshipssocietal costssuicidal behaviorsuicidal risksuicide ratetechnological innovationtext searchingtherapy development
项目摘要
PROJECT SUMMARY/ABSTRACT
Suicide is a leading public health problem, accounting for over 45,000 deaths in 2017 alone 1. With suicide
rates continuing to rise 2, and the prediction of suicidal thoughts and behaviors (STBs) remaining stagnant 3, there
is a need to shift the focus from identifying who is at risk to when individuals are at risk for suicide. Studies
utilizing ecological momentary assessment to collect data at several intervals per day have demonstrated that
suicidal ideation and STB risk factors change rapidly across the course of the day 4; yet, there is a need to improve
the granularity of assessment to improve identification of real-time risk elevation. To enable reliable detection of
STBs within a relatively short window of time (e.g., minutes) will require technologically innovative methodologies
that can continuously capture the dynamic nature of suicide risk.
We propose the use of a novel form of digital phenotyping, termed Screenomics 5-6, that captures screenshots
from participant’s phones every five seconds. These data can then be utilized to indirectly identify STBs in real-
time (via generated and viewed text), as well as prospectively predict STBs via individual engagement in
produced and consumed social interactions (via application usage, text messages, and social media text), which
have knowns links to STBs 7. Among 80 individuals with past-month STBs, two primary aims will be investigated.
Aim 1 is to demonstrate that text collected through smartphone use (i.e., web browser, text messages) can serve
as an accurate proxy for the direct assessment of STBs. Aim 2 will identify prospective, short-term STB risk
associated with produced and consumed social interactions not demonstrated via direct assessment.
The research team (Co-PIs: Ammerman, Jacobucci; Co-I: Jiang; Consultants: Kleiman, Ram, Robinson,
Reeves, Bourgeois, Liu) has access to world-class expertise, with extensive experience in EMA data collection
in high-risk samples, machine learning for predicting suicide, collecting and modeling continuous data streams,
including screenshot data, and ethical and privacy practices unique to technological innovations.
To meaningfully reduce suicide rates, a more nuanced understanding of STBs and associated risk factors in
real-time is required. Screenomics provides near continuous monitoring, allowing for a closer approximation of
the true associations between risk factors and STBs. Indeed, there is a need to identify near-term risk factors
prior to STB occurrences to successfully deliver an intervention and prevent STBs. These findings will lay the
groundwork necessary for utilizing passive data in STB detection and intervention. Given the grave personal and
societal cost of suicide, this work has important public health implications.
项目总结/摘要
自杀是一个主要的公共卫生问题,仅在2017年就有超过45,000人死亡。与自杀
率继续上升2,自杀想法和行为(STBs)的预测保持停滞3,
有必要将重点从确定谁有自杀风险转移到个人何时有自杀风险。研究
利用生态瞬时评估每天几次收集数据表明,
自杀意念和STB风险因素在第4天的过程中迅速变化;然而,需要改善
评估的粒度,以提高对实时风险升级的识别。为了能够可靠地检测
在相对短的时间窗口内的STB(例如,将需要技术创新的方法
可以持续捕捉自杀风险的动态本质。
我们建议使用一种新形式的数字表型,称为Screenomics 5-6,
每五秒就有一条来自参与者手机的短信然后,这些数据可以用于在真实的环境中间接识别STB。
时间(通过生成和查看的文本),以及前瞻性地预测STB通过个人参与
产生和消费社交互动(通过应用程序使用,短信和社交媒体文本),
有已知的链接到机顶盒7.在80个人与过去一个月的STB,两个主要目标将进行调查。
目的1是证明通过智能手机使用收集的文本(即,web浏览器、文本消息)可以提供
作为直接评估STB的准确替代。目标2将确定预期的短期STB风险
与生产和消费的社会互动相关,而不是通过直接评估来证明。
研究小组(联合PI:Ammerman,Jacobucci;联合I:Jiang;顾问:Kleiman,Ram,罗宾逊,
Reeves,Bourgeois,Liu)拥有世界一流的专业知识,在EMA数据收集方面拥有丰富的经验
在高风险样本中,机器学习用于预测自杀,收集和建模连续数据流,
包括屏幕截图数据,以及技术创新所特有的道德和隐私惯例。
为了有意义地降低自杀率,需要对性传播疾病和相关风险因素有更细致的了解,
需要实时。Screenomics提供近乎连续的监测,允许更接近
风险因素与性传播疾病之间的真正联系。的确,有必要确定近期风险因素
在STB发生之前成功进行干预并防止STB。这些发现将奠定
在STB检测和干预中利用被动数据的必要基础。鉴于严重的个人和
自杀的社会成本,这项工作具有重要的公共卫生意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brooke A Ammerman其他文献
Brooke A Ammerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brooke A Ammerman', 18)}}的其他基金
Improving momentary suicide risk identification through adaptive time sampling
通过自适应时间采样提高瞬时自杀风险识别
- 批准号:
10575138 - 财政年份:2022
- 资助金额:
$ 23.48万 - 项目类别:
Advancing Real-Time Suicide Risk Detection Through the Digital Phenotyping Smartphone Application Screenomics
通过数字表型智能手机应用程序推进实时自杀风险检测 Screenomics
- 批准号:
10584564 - 财政年份:2022
- 资助金额:
$ 23.48万 - 项目类别:
Acute Effects of Interpersonal Stress on Behavioral Indices of NSSI
人际压力对 NSSI 行为指数的急性影响
- 批准号:
9050738 - 财政年份:2015
- 资助金额:
$ 23.48万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Research Grant