Improving momentary suicide risk identification through adaptive time sampling

通过自适应时间采样提高瞬时自杀风险识别

基本信息

  • 批准号:
    10575138
  • 负责人:
  • 金额:
    $ 23.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-12-16 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Suicide rates have risen sharply over the past 20 years1. There is a need to more precisely identify proximal risk indicators for the development of near-term suicide risk in order to effectively intervene. Studies utilizing ecological momentary assessment (EMA) to collect data at several intervals per day have demonstrated that suicidal ideation (SI) and proximal risk factors change rapidly across the course of the day2. However, prior EMA studies examining SI dynamics implement stable assessments, with intervals of several hours between SI assessments across the duration of a study period3 for all participants. This one-size-fits-all approach to SI assessment fails to capture the nuanced within-person variability of the timescale of the development of acute suicide risk. In turn, we lack even a basic understanding of within-person variability in the time varying relationship between SI and its proximal risk factors. The proposed study aims to address the limitations of current assessment approaches in proximal suicide risk research through the development of a personalized, adaptive time sampling system. The specific objectives of the proposed research are to: (1) develop a novel, adaptive time assessment system that more efficiently and accurately identifies when an individual is at highest risk for SI; and (2) advance the understanding of SI and its theoretically-informed proximal risk factors at finer timescales. Data collected according to varied timing schedules in the first phase will be used to train an algorithm that generates predictions of suicide risk, predictions that will be adaptively use to determine assessment timing during the second phase of data collection. Aim 1 is to develop the adaptive time assessment system, followed by assessing the predictive accuracy of the adaptive sampling system (Aim 2) and identifying variations in person-specific effects of the relationship between SI and theoretically-informed risk factors (Aim 3). The research team (PIs: Ammerman, Jacobucci; Co-I: Cheng; Consultants: Burke) has access to world-class expertise, with extensive experience in EMA data collection in high-risk samples, machine learning for suicide prediction, longitudinal data analysis, collecting and modeling continuous data streams, and the development of adaptive assessment platforms. To meaningfully reduce suicide rates, a more nuanced understanding of suicidal thoughts and associated risk factors is required. Our adaptive assessment platform will more efficiently assess suicidal thoughts and risk factors, allowing for a closer approximation of the true associations. Indeed, there is a need to identify near-term risk factors prior to suicidal thought occurrences to successfully deliver an intervention and prevent suicidal outcomes. These findings will support the successful implementation of just-in-time adaptive interventions through increased precision of suicide risk detection and targeted intervention timing. Given the grave personal and societal cost of suicide, this work has important public health implications.
项目总结/摘要 在过去的20年里,自杀率急剧上升。有必要更准确地确定 制定近期自杀危险指标,以便对近期自杀危险进行有效干预。研究 利用生态瞬时评估(EMA)收集数据,在每天几个时间间隔,已证明 自杀念头(SI)和近端风险因素在一天中迅速变化2。但是现有 EMA研究检查SI动态实施稳定评估,SI之间间隔数小时 对所有参与者在研究期间3进行评估。这种通用的SI方法 评估未能捕捉到急性脑梗死发展时间尺度的细微变化, 自杀风险反过来,我们甚至缺乏对时间变化中的人内可变性的基本理解。 SI与其近端危险因素的关系。 这项研究旨在解决目前评估近端自杀方法的局限性 通过开发个性化的、自适应的时间抽样系统进行风险研究。的具体目标 提出的研究是:(1)开发一种新的,自适应的时间评估系统, 准确地识别个体何时处于SI的最高风险;以及(2)促进对SI及其 在更精细的时间尺度上理论上告知近端风险因素。根据不同时间收集的数据 第一阶段的时间表将用于训练一种算法,该算法生成自杀风险预测、预测 其将自适应地用于在数据收集的第二阶段期间确定评估定时。目标1是 开发自适应时间评估系统,然后评估自适应时间评估系统的预测准确性。 抽样系统(目标2)和识别SI和 理论上知情的风险因素(目标3)。 研究团队(PI:Ammerman,Jacobucci; Co-I:Cheng;顾问:Burke)可以访问世界一流的 专业知识,在高风险样本的EMA数据收集,自杀机器学习方面拥有丰富的经验 预测,纵向数据分析,收集和建模连续数据流,以及开发 适应性评估平台。 为了有意义地降低自杀率,对自杀想法和相关的 风险因素是必需的。我们的适应性评估平台将更有效地评估自杀想法和风险 因素,允许更接近真实的关联。的确,有必要确定近期 自杀念头发生前的风险因素,以成功提供干预并预防自杀 结果。这些发现将支持及时适应性干预措施的成功实施 通过提高自杀风险检测的精确度和有针对性的干预时机。鉴于严重的个人 和自杀的社会成本,这项工作具有重要的公共卫生意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brooke A Ammerman其他文献

Brooke A Ammerman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brooke A Ammerman', 18)}}的其他基金

Advancing Real-Time Suicide Risk Detection Through the Digital Phenotyping Smartphone Application Screenomics
通过数字表型智能手机应用程序推进实时自杀风险检测 Screenomics
  • 批准号:
    10428874
  • 财政年份:
    2022
  • 资助金额:
    $ 23.48万
  • 项目类别:
Advancing Real-Time Suicide Risk Detection Through the Digital Phenotyping Smartphone Application Screenomics
通过数字表型智能手机应用程序推进实时自杀风险检测 Screenomics
  • 批准号:
    10584564
  • 财政年份:
    2022
  • 资助金额:
    $ 23.48万
  • 项目类别:
Acute Effects of Interpersonal Stress on Behavioral Indices of NSSI
人际压力对 NSSI 行为指数的急性影响
  • 批准号:
    9050738
  • 财政年份:
    2015
  • 资助金额:
    $ 23.48万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 23.48万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 23.48万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了