A Human iPSC-based 3D Microphysiological System for Modeling Cardiac Dysfunction in Microgravity
基于人体 iPSC 的 3D 微生理系统,用于模拟微重力下的心脏功能障碍
基本信息
- 批准号:10434471
- 负责人:
- 金额:$ 8.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-24 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdultAffectAgingAstronautsAttentionAttenuatedBiological AssayBiological ModelsBiomimeticsCardiacCardiac MyocytesCardiomyopathiesCardiovascular systemCategoriesCell Culture TechniquesCellsCustomDataData Management ResourcesData SetDatabase Management SystemsDefectDepositionDeteriorationDevelopmentDisease modelEarth orbitEffectivenessEnsureEventExposure toExtracellular MatrixFunctional disorderFutureGoalsGrantHealthHeartHeart DiseasesHumanHuman ResourcesHuman bodyImpairmentInternationalJournalsLeadLipidsLong-Term EffectsMeasurementMeasuresMechanicsMediatingMethodologyMethodsMicrogravityMicrogravity SimulationMissionMitochondriaModelingMyocardial dysfunctionMyocardiumPatientsPeer ReviewPharmaceutical PreparationsPharmacologyPhasePhysiologicalPlanet EarthPolymersPopulationPositioning AttributePreventiveProcessPublicationsQuality ControlReproducibilityResearchResistanceRiskSpace FlightStructureSystemTestingTherapeuticTherapeutic InterventionTimeTimeLineTissuesTravelUpdateWorkabsorptionbasebiological adaptation to stresscardiac tissue engineeringcardiovascular effectscombatexperimental analysisexperimental studyforce sensorhuman modelimprovedinduced pluripotent stem cellmechanical forcemicrophysiology systemmitochondrial dysfunctionnovel therapeutic interventionnovel therapeuticspolydimethylsiloxanepreventresponserisk minimizationscaffoldspace stationtechnology developmenttherapeutic candidatetime use
项目摘要
PROJECT SUMMARY
Spaceflight has been shown to have negative impacts on the heart, with cardiac arrythmias observed in
astronauts and the risk of adverse cardiac events increasing significantly in astronauts who traveled beyond low
Earth orbit. Despite these observations, little is known about the underlying mechanistic reasons at the cell and
tissue level. To address this, we developed a high-throughput microphysiological engineered heart tissue (EHT)
model of human cardiac tissue, derived from human induced pluripotent stem cells (hiPSCs) to study the effects
of spaceflight on cardiac cell and tissue structure and function. These EHTs are generated with a biomimetic
extracellular matrix composition and stiffness with increased tissue conductivity, which improves overall tissue
unction and is more analogous to adult human myocardium than many previous models. During the first phase
of the parental grant, these EHTs were launched to the International Space Station (ISS), where contractile
forces were measured in real time using a magnet-based force sensor system. Following 28 days in microgravity,
tissue contractile function was impaired and mitochondrial dysfunction was observed. During the UH3 phase, a
random positioning machine is being used to simulate microgravity and to test attenuating strategies. In this
project, we will establish an in-house data management system to rigorously organize the datasets of the
parental grant. These datasets will encompass control tissue function of physiologically-relevant tissues in our
microphysiological system, tissues under real and simulated microgravity, and results of therapeutic screens on
tissue function. It will also include information on strategies to prevent drug absorption in the polymeric
components of our system. Once organized, the data will be compatible with, and deposited into, the
Microphysiology Systems Database (MPS-Db), where it will be publicly available. Our data will expedite the
development of technologies to combat the adverse cardiovascular effects caused by long-term exposure to
microgravity. Additionally, the effects of spaceflight on the human body appear to mimic an accelerated aging
process, including cardiac deterioration, in the general human population. We expect our data will also facilitate
the development of technologies and therapies to attenuate cardiomyopathies on Earth.
项目总结
航天飞行已被证明对心脏有负面影响,在太空中观察到心律失常
宇航员和超过低空旅行的宇航员发生不良心脏事件的风险显著增加
地球轨道。尽管有这些观察,但对细胞和细胞的潜在机制原因知之甚少。
组织水平。为了解决这一问题,我们开发了一种高通量微生理工程心脏组织(Eht)。
以人心肌组织为模型,研究人诱导多能干细胞(HiPSCs)诱导分化的效果
航天对心肌细胞和组织结构和功能的影响。这些超高温超导是由一种仿生的
细胞外基质组成和硬度增加,组织导电性增加,从而改善整体组织
与许多以前的模型相比,它更接近于成人的心肌。在第一阶段
在父母的资助中,这些EHTS被发射到国际空间站(ISS),在那里收缩
力是使用基于磁铁的力传感器系统实时测量的。在微重力状态下运行28天后,
组织收缩功能受损,线粒体功能障碍。在UH3阶段,一个
随机定位机正被用来模拟微重力和测试衰减策略。在这
项目,我们将建立一个内部数据管理系统,严格组织
父母补助。这些数据集将包括我们的
微生理系统,真实和模拟微重力下的组织,以及治疗筛选的结果
组织功能。它还将包括关于防止药物在聚合物中吸收的策略的信息
我们系统的组成部分。一旦组织好,数据将兼容并存储到
微生理学系统数据库(MPS-DB),将在那里公开使用。我们的数据将加快
开发技术以对抗长期接触铅所造成的不良心血管影响
微重力。此外,太空飞行对人体的影响似乎类似于加速衰老。
在一般人群中,包括心脏恶化的过程。我们预计我们的数据也将有助于
地球上减轻心肌病的技术和治疗方法的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deok-Ho Kim其他文献
Deok-Ho Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deok-Ho Kim', 18)}}的其他基金
High-throughput nanoIEA-based Assay for Screening Immune Cell-Vascular Interactions
用于筛选免疫细胞-血管相互作用的基于 nanoIEA 的高通量测定法
- 批准号:
10592897 - 财政年份:2023
- 资助金额:
$ 8.04万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10502626 - 财政年份:2022
- 资助金额:
$ 8.04万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10869757 - 财政年份:2022
- 资助金额:
$ 8.04万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10861445 - 财政年份:2022
- 资助金额:
$ 8.04万 - 项目类别:
A Human iPSC-based 3D Microphysiological System for Modeling Cardiac Dysfunction in Microgravity
基于人体 iPSC 的 3D 微生理系统,用于模拟微重力下的心脏功能障碍
- 批准号:
10632929 - 财政年份:2022
- 资助金额:
$ 8.04万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10636892 - 财政年份:2022
- 资助金额:
$ 8.04万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10179233 - 财政年份:2021
- 资助金额:
$ 8.04万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10378025 - 财政年份:2021
- 资助金额:
$ 8.04万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10661492 - 财政年份:2021
- 资助金额:
$ 8.04万 - 项目类别:
DISEASE MODELING AND PHENOTYPIC DRUG SCREENING FOR DYSTROPHIC CARDIOMYOPATHY
营养不良性心肌病的疾病建模和表型药物筛选
- 批准号:
10164856 - 财政年份:2020
- 资助金额:
$ 8.04万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 8.04万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 8.04万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 8.04万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 8.04万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 8.04万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 8.04万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 8.04万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 8.04万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 8.04万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 8.04万 - 项目类别:
Research Grant














{{item.name}}会员




