Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads

应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热

基本信息

  • 批准号:
    10431261
  • 负责人:
  • 金额:
    $ 7.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2024-02-28
  • 项目状态:
    已结题

项目摘要

Project Summary There is a steady growth in the use of conductive medical implants in the US and globally. Currently, more than 12 million Americans carry a form of orthopedic, cardiac, or neuromodulation device, and the number grows by 100,000 annually. It is estimated that 50-75% of patients with implants would benefit from magnetic resonance imaging (MRI) during their lifetime, some with repeated examinations. Unfortunately, the interaction between MRI's radiofrequency (RF) fields and conductive implants have led to fatal injuries due to RF heating of implants, making MRI inaccessible to most patients. In response, extensive effort has been dedicated to quantifying and mitigating the problem of MR-induced RF heating. Following regulatory recommendations, these efforts heavily rely on full-wave electromagnetic (EM) simulations that model details of MRI RF coils, human body, and implant, and as such are notoriously cumbersome. Even taking advantage of today's high- power computing clusters it typically takes tens of hours to complete a single simulation. Our long-term goal is to enable application of in-silico medicine for RF heating assessment of implants in real time and on a patient- by-patient basis. Our main hypothesis is to test whether advanced deep learning (DL) methods can rapidly and accurately predict RF heating of elongated implants (such as leads), when only the background electric field of the MRI RF coil and the implant's trajectory are in hand. The background RF field is the field that exists in the body in the absence of the implanted device and can be easily calculated in advance for any known MRI coil. Similarly, the implant's trajectory can be extracted from routine medical images in only a few minutes. Herein, we propose to develop, optimize, and experimentally validate a deep learning approach that predicts RF heating of DBS systems during MRI with body coils at both 1.5 T and 3 T with <2℃ error. We will build training datasets from 500 patient-derived DBS lead models, apply EM simulations to calculate ground truth RF heating using vendor-provided models of MRI RF coils, and develop deep learning algorithms to predict the RF heating with 2℃ accuracy with knowledge of only the implant's trajectory (CT-based) and the coil's features (vendor- specific). If successful, our work will introduce a paradigm shift in the practice of MRI RF heating assessment, reducing simulation times from tens of hours to a few minutes. This will democratize a practice that is currently afforded by only a handful of well-resourced companies and opens the door to a plethora of novel implant designs and patient-specific safety guidelines. Importantly, the knowledge gained in this innovative work can be translated to patients with other types of implants, especially those with cardiac implantable electronic devices and spinal cord stimulators.
项目摘要 在美国和全球范围内,导电医疗植入物的使用稳步增长。目前,更多 超过1200万美国人携带某种形式的矫形、心脏或神经调节装置, 每年增长10万。据估计,50-75%的植入患者将受益于磁 核磁共振成像(MRI),有些人反复检查。不幸的是, MRI的射频(RF)场和导电植入物之间的相互作用导致了因RF加热而造成的致命伤害 这使得大多数患者无法使用MRI。作为回应,我们付出了巨大的努力, 量化和减轻MR感应RF加热的问题。根据监管建议, 这些努力严重依赖于对MRI RF线圈的细节进行建模的全波电磁(EM)仿真, 人体和植入物,因此是非常麻烦。即使利用今天的高点- 功率计算集群通常需要几十个小时来完成单个模拟。我们的长期目标是 为了能够将计算机医学应用于真实的植入物的RF加热评估和患者- 患者基础。我们的主要假设是测试高级深度学习(DL)方法是否可以快速, 准确预测细长植入物(如电极导线)的射频致热,当只有 核磁共振射频线圈和植入物的轨迹都在掌握中背景RF场是存在于电磁场中的场。 在没有植入设备的情况下,可以很容易地预先计算出任何已知的MRI线圈。 同样,植入物的轨迹可以在几分钟内从常规医学图像中提取出来。在此, 我们建议开发、优化和实验验证一种深度学习方法, 在1.5 T和3 T下使用体线圈进行MRI期间DBS系统发热,误差<2℃。我们将建立培训 来自500个患者DBS电极导线模型的数据集,应用EM模拟计算真实射频产热 使用供应商提供的MRI RF线圈模型,并开发深度学习算法来预测RF发热 仅了解植入物轨迹(基于CT)和线圈特征(供应商- 具体)。如果成功,我们的工作将在MRI射频致热评估实践中引入范式转变, 将模拟时间从几十小时减少到几分钟。这将使一种目前 只有少数资源充足的公司才能提供,并为大量新颖的植入物打开了大门。 设计和患者特定的安全指南。重要的是,在这项创新工作中获得的知识可以 将其转化为其他类型植入物的患者,特别是心脏植入式电子植入物的患者 设备和脊髓刺激器。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ulas Bagci其他文献

Ulas Bagci的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ulas Bagci', 18)}}的其他基金

Hybrid Intelligence for Trustable Diagnosis And Patient Management of Prostate Cancer (HIT-PIRADS)
用于前列腺癌可信诊断和患者管理的混合智能 (HIT-PIRADS)
  • 批准号:
    10611212
  • 财政年份:
    2023
  • 资助金额:
    $ 7.07万
  • 项目类别:
Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads
应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热
  • 批准号:
    10611468
  • 财政年份:
    2022
  • 资助金额:
    $ 7.07万
  • 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
  • 批准号:
    10391173
  • 财政年份:
    2020
  • 资助金额:
    $ 7.07万
  • 项目类别:
Radiologist-Centered Artificial Intelligence (RCAI) for Lung Cancer Screening and Diagnosis
以放射科医生为中心的人工智能(RCAI)用于肺癌筛查和诊断
  • 批准号:
    10640048
  • 财政年份:
    2020
  • 资助金额:
    $ 7.07万
  • 项目类别:
Radiologist-Centered Artificial Intelligence (RCAI) for Lung Cancer Screening and Diagnosis
以放射科医生为中心的人工智能(RCAI)用于肺癌筛查和诊断
  • 批准号:
    10339620
  • 财政年份:
    2020
  • 资助金额:
    $ 7.07万
  • 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
  • 批准号:
    10397701
  • 财政年份:
    2020
  • 资助金额:
    $ 7.07万
  • 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
  • 批准号:
    10689657
  • 财政年份:
    2020
  • 资助金额:
    $ 7.07万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了