Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors

Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层

基本信息

  • 批准号:
    10689657
  • 负责人:
  • 金额:
    $ 48.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Project Summary The overall goal of this project is to develop a new diagnostic tool, called Cyst-X, for accurate detection and characterization of pre-cancerous pancreatic cysts and improve patient outcome through precise decisions (surgical resection or surveillance). Pancreatic cancer is the most fatal cancer among all cancers due to its poor prognosis and lack of early detection methods. Unlike other common cancers where precursor lesions are well known (colon polyps-colon cancer, ductal carcinoma in situ (DCIS)-breast cancer), pancreas cancer precursors (cysts) are poorly understood. Diagnosing pancreatic cancer at earlier stages may decrease mortality and morbidity rates of this lethal disease. One major approach for diagnosing pancreatic cancer at earlier stages is to target pancreatic precancerous pancreatic neoplasms (cysts) before they turn into invasive cancer. Once cysts are detected with radiology imaging such as magnetic resonance imaging (MRI), they should be characterized with respect to their malignant potential. Low-risk cysts remain harmless; hence, patients should remain under surveillance program. On the other hand, high-risk cysts can progress into an aggressive cancer, therefore, patients should undergo surgical resection if possible. Despite this, international guidelines for risk stratification of pancreatic cysts are woefully deficient (55-76% accuracy for determining characteristics of low-risk vs high risk cystic tumors, while only 40-50% accuracy detecting cysts with MRI). Combined, these critical barriers indicate that there is an urgent need for improving characterization of pancreatic cystic tumors. Based on our preliminary results, which support the development of an image-based diagnostic decision tool, we hypothesize that our proposed Cyst-X will produce higher diagnostic accuracy for characterizing pancreatic cysts and provide better patient management compared to the current guidelines. Towards this overarching hypothesis, we will first use powerful deep learning methods (specifically deep capsule networks) for automatically detecting and segmenting the pancreas and pancreatic cysts from multi-sequence MRI scans (Aim 1). Next, we will create an interpretable image-based diagnosis model for characterizing pancreatic cysts (Aim 2). Accurate characterization is necessary for such a diagnostic model; however, emphasis will also be placed on interpretability of the machine generated diagnostic model. Visual explanation of the discriminative features will help radiologists obtain higher decision rates in patient management. In Aim 3, we will validate the proposed Cyst-X framework in a multi-center study. A total of 1200 multi-sequence MRI scans will be collected from three participating clinical centers (Mayo Clinic, Columbia University Medical Center, Erasmus Medical Center). Comprehensive evaluations will be made to test the validity and generalizability of Cyst-X. All evaluations will be made with respect to the international guidelines and biopsy proven ground truths. Our proposed study has wide implications: specifically, in the long term, it will influence early diagnosis of pancreatic cancer and clinical decision making to improve survival rates of pancreatic cancer.
项目摘要 该项目的总体目标是开发一种新的诊断工具,称为Cyst-X,用于准确检测, 通过精确的决策来表征癌前胰腺囊肿并改善患者预后 (手术切除或监测)。胰腺癌是所有癌症中最致命的癌症,因为它的穷人 预后差和缺乏早期检测方法。不像其他常见的癌症, 已知(结肠息肉-结肠癌、导管原位癌(DCIS)-乳腺癌)、胰腺癌前体 (囊肿)知之甚少。早期诊断胰腺癌可以降低死亡率, 这种致命疾病的发病率。早期诊断胰腺癌的一种主要方法是 针对胰腺癌前胰腺肿瘤(囊肿),在它们变成浸润性癌症之前。一旦囊肿 通过放射学成像(如磁共振成像(MRI))检测,应对其进行表征 关于它们的恶性潜能。低风险的囊肿仍然是无害的;因此,患者应保持在 监视程序。另一方面,高风险的囊肿可以进展为侵袭性癌症,因此, 如有可能,病人应接受手术切除。尽管如此,国际风险分层指南 胰腺囊肿的低危与高危特征的诊断准确率为55- 76 风险囊性肿瘤,而只有40-50%的准确性检测囊肿与MRI)。这些关键障碍加在一起 表明迫切需要改善胰腺囊性肿瘤特征。基于我们 初步结果,支持基于图像的诊断决策工具的发展,我们假设 我们提出的Cyst-X将产生更高的诊断准确性,为胰腺囊肿的特征,并提供 与现行指南相比,患者管理更好。对于这个总体假设,我们将 首先使用强大的深度学习方法(特别是深度胶囊网络)来自动检测和 从多序列MRI扫描中分割胰腺和胰腺囊肿(目标1)。接下来,我们将创建一个 用于表征胰腺囊肿的可解释的基于图像的诊断模型(目标2)。准确 表征是必要的,这样一个诊断模型;然而,重点也将放在 机器生成的诊断模型的可解释性。区分特征的视觉解释将 帮助放射科医生在患者管理中获得更高的决策率。在目标3中,我们将验证所提出的 多中心研究中的Cyst-X框架。将从三个区域收集总计1200个多序列MRI扫描。 参与的临床中心(马约诊所、哥伦比亚大学医学中心、伊拉斯谟医学中心)。 对Cyst-X的有效性和可推广性进行综合评价。所有的评价都将 根据国际指南和活检证实的基本事实制定。我们提出的研究具有广泛的 意义:从长远来看,这将影响胰腺癌的早期诊断和临床 提高胰腺癌的生存率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ulas Bagci其他文献

Ulas Bagci的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ulas Bagci', 18)}}的其他基金

Hybrid Intelligence for Trustable Diagnosis And Patient Management of Prostate Cancer (HIT-PIRADS)
用于前列腺癌可信诊断和患者管理的混合智能 (HIT-PIRADS)
  • 批准号:
    10611212
  • 财政年份:
    2023
  • 资助金额:
    $ 48.87万
  • 项目类别:
Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads
应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热
  • 批准号:
    10431261
  • 财政年份:
    2022
  • 资助金额:
    $ 48.87万
  • 项目类别:
Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads
应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热
  • 批准号:
    10611468
  • 财政年份:
    2022
  • 资助金额:
    $ 48.87万
  • 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
  • 批准号:
    10391173
  • 财政年份:
    2020
  • 资助金额:
    $ 48.87万
  • 项目类别:
Radiologist-Centered Artificial Intelligence (RCAI) for Lung Cancer Screening and Diagnosis
以放射科医生为中心的人工智能(RCAI)用于肺癌筛查和诊断
  • 批准号:
    10640048
  • 财政年份:
    2020
  • 资助金额:
    $ 48.87万
  • 项目类别:
Radiologist-Centered Artificial Intelligence (RCAI) for Lung Cancer Screening and Diagnosis
以放射科医生为中心的人工智能(RCAI)用于肺癌筛查和诊断
  • 批准号:
    10339620
  • 财政年份:
    2020
  • 资助金额:
    $ 48.87万
  • 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
  • 批准号:
    10397701
  • 财政年份:
    2020
  • 资助金额:
    $ 48.87万
  • 项目类别:

相似海外基金

CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 48.87万
  • 项目类别:
    Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
  • 批准号:
    LP210200798
  • 财政年份:
    2023
  • 资助金额:
    $ 48.87万
  • 项目类别:
    Linkage Projects
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
  • 批准号:
    2765246
  • 财政年份:
    2022
  • 资助金额:
    $ 48.87万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 48.87万
  • 项目类别:
    Standard Grant
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
  • 批准号:
    ES/R00983X/2
  • 财政年份:
    2022
  • 资助金额:
    $ 48.87万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 48.87万
  • 项目类别:
    Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
  • 批准号:
    10683803
  • 财政年份:
    2022
  • 资助金额:
    $ 48.87万
  • 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
  • 批准号:
    460558
  • 财政年份:
    2022
  • 资助金额:
    $ 48.87万
  • 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
  • 批准号:
    RGPIN-2022-04417
  • 财政年份:
    2022
  • 资助金额:
    $ 48.87万
  • 项目类别:
    Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
  • 批准号:
    10544772
  • 财政年份:
    2022
  • 资助金额:
    $ 48.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了