Using Machine Learning with Real-World Data to Identify Autism Risk in Children
使用机器学习和真实世界数据来识别儿童自闭症风险
基本信息
- 批准号:10430153
- 负责人:
- 金额:$ 26.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-14 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAlgorithmsAmericanBase RatiosCenters for Disease Control and Prevention (U.S.)ChildClinicClinicalClinical InformaticsCodeDataData SetDatabasesDetectionDevelopmentDiagnosisDiagnosticElectronic Health RecordEvaluationFeeling suicidalFloridaFoundationsFutureGoalsGoldHealth ServicesHealth systemHealthcareInternational Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10)InterventionLatinoLocationLogistic RegressionsLos AngelesMachine LearningMeasuresMethodsModelingNational Institute of Mental HealthNatural Language ProcessingNatural Language Processing pipelineOutcomeParentsPatientsPediatric HospitalsPerformancePhysiciansPopulationPublic HealthROC CurveRandomizedRecordsReportingResearchResearch PersonnelResearch ProposalsReview LiteratureRiskRisk FactorsSamplingSiteStructureTestingTextTrainingTreesTrustUnderserved PopulationValidationWorkagedautism spectrum disorderautistic childrenclinical decision supportclinical diagnosiscohortcomputable phenotypescost effectivedaily functioningdata standardsdeep learning modeldisorder riskeconomic impactelectronic structureethnic disparitygirlsgradient boostinghigh rewardimprovedindexingmachine learning modelphenotyping algorithmphrasespredictive modelingpsychological distressrandom forestrisk prediction modelsexsex disparitysociodemographicsstructured datasupport toolssupport vector machinesurveillance networktoolunstructured data
项目摘要
PROJECT SUMMARY/ABSTRACT
Early and accurate identification of autism spectrum disorder (ASD) is important because ASD interventions
can support positive long-term developmental outcomes, but there is a delay of >2 years between the age
children can reliably be diagnosed and the average age of diagnosis; and 1 in 4 U.S. children aged 8 with ASD
have not been diagnosed. Girls and Latino children are disproportionately impacted by the problem of delayed
diagnosis and under-identification of ASD, in part because clinicians are less likely to recognize ASD risk
factors in them and refer them for an ASD evaluation. Therefore, predicting ASD risk at a population level is
needed to enhance early and accurate detection, particularly in these underserved populations. Researchers
are beginning to harness clinical informatics methods to identify ASD from real-world data in electronic health
records (EHRs), using both structured (e.g., diagnosis codes) and unstructured data (e.g., physician notes).
However, existing algorithms suffer from multiple major flaws, including non-representativeness of training
samples, outdated diagnosis codes and natural language processing (NLP) methods, and a lack of ‘verified’
ASD diagnosis in their gold standard datasets. This proposed research addresses these gaps by developing a
contemporary ASD risk model that uses state-of-the-art machine learning and NLP methods. Using EHR data
from Children’s Hospital Los Angeles (including a gold standard dataset with ‘verified’ ASD diagnoses from the
Boone Fetter Clinic) and the OneFlorida Data Trust (a Florida state-wide EHR database), we will (1) develop a
computable phenotype for ASD using both structured and unstructured EHR data (including parent-reported
ASD discriminators and features associated with ASD that are often found in free text in children’s records),
and (2) develop a machine-learning risk prediction model for ASD. This will lay the foundation for a clinical
decision support tool, to be integrated into EHRs to notify a clinician when a child warrants ASD evaluation.
This has potential to improve ASD identification in all children, but it may particularly benefit girls and Latino
children, reducing sex and ethnic disparities. Further, it will be easily expandable into a ‘next steps’ study to the
overall PCORnet, which provides healthcare to over 24 million children. By using EHRs, this proposal holds
promise for future cost-effective health systems interventions that can help to correct a sociodemographic
‘imbalance’ in ASD research by reaching girls and Latino children at risk for ASD.
项目总结/摘要
自闭症谱系障碍(ASD)的早期和准确识别是重要的,因为ASD干预
可以支持积极的长期发展结果,但在年龄之间存在>2年的延迟
儿童可以可靠地诊断和诊断的平均年龄;和四分之一的美国儿童8岁ASD
没有被诊断出来。女孩和拉丁裔儿童受到延误问题的影响尤为严重
ASD的诊断和识别不足,部分原因是临床医生不太可能认识到ASD的风险
并将其用于ASD评估。因此,在人群水平上预测ASD风险是
需要加强早期和准确的检测,特别是在这些服务不足的人群中。研究人员
开始利用临床信息学方法从电子健康的真实数据中识别ASD
记录(EHR),使用结构化(例如,诊断代码)和非结构化数据(例如,医生笔记)。
然而,现有的算法存在多个主要缺陷,包括训练的非代表性
样本,过时的诊断代码和自然语言处理(NLP)方法,以及缺乏“验证”
ASD诊断在他们的黄金标准数据集。这项拟议的研究通过开发一个
现代ASD风险模型,使用最先进的机器学习和NLP方法。使用EHR数据
来自洛杉矶儿童医院(包括来自
Boone Fetter诊所)和One佛罗里达数据信托(一个佛罗里达州范围内的EHR数据库),我们将(1)开发一个
使用结构化和非结构化EHR数据(包括父母报告的
ASD判别器和与ASD相关的特征,这些特征经常在儿童记录的自由文本中找到),
以及(2)开发ASD的机器学习风险预测模型。这将为临床研究奠定基础。
决策支持工具,将被集成到EHR中,以便在儿童需要ASD评估时通知临床医生。
这有可能改善所有儿童的ASD识别,但它可能特别有利于女孩和拉丁美洲人
减少性别和种族差异。此外,它将很容易扩展到“下一步”研究,
整个PCORnet为2400多万儿童提供医疗保健。通过使用EHR,
承诺未来的具有成本效益的卫生系统干预措施,可以帮助纠正社会人口
通过接触有ASD风险的女孩和拉丁裔儿童来实现ASD研究的“不平衡”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amber M. Angell其他文献
Pediatricians’ role in healthcare for Latino autistic children: Shared decision-making versus “You’ve got to do everything on your own”
儿科医生在拉丁美洲自闭症儿童医疗保健中的作用:共同决策与“你必须自己做所有事情”
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5.2
- 作者:
Amber M. Angell;Olivia J. Lindly;Daniella C Floríndez;L. Floríndez;Leah I. Stein Duker;K. Zuckerman;Larry Yin;O. Solomon - 通讯作者:
O. Solomon
Sleep Disorders and Constipation in Autistic Children and Youth: Who Receives Standard of Care Drug Treatments?
- DOI:
10.1007/s10803-025-06762-7 - 发表时间:
2025-03-15 - 期刊:
- 影响因子:2.800
- 作者:
Amber M. Angell;Choo Phei Wee;Alexis Deavenport-Saman;Camille Parchment;Chen Bai;Olga Solomon;Larry Yin - 通讯作者:
Larry Yin
Latino Families’ Experiences With Autism Services
拉丁裔家庭自闭症服务的经验
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Amber M. Angell;Gelya Frank;O. Solomon - 通讯作者:
O. Solomon
Amber M. Angell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amber M. Angell', 18)}}的其他基金
Using Machine Learning with Real-World Data to Identify Autism Risk in Children
使用机器学习和真实世界数据来识别儿童自闭症风险
- 批准号:
10591514 - 财政年份:2022
- 资助金额:
$ 26.7万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Continuing Grant
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Fellowship
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
- 批准号:
24K13490 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
- 批准号:
MR/Y003365/1 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Research Grant