High Speed Angiography at 1000 frames per second

每秒 1000 帧的高速血管造影

基本信息

  • 批准号:
    10430097
  • 负责人:
  • 金额:
    $ 65.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

7. Project Summary The long-term goal is to provide unprecedented 1000 frame per second angiography based on single- photon-counting detectors but with standard x-ray sources (a total capability presently unavailable to clinicians) to enable improved diagnostic and interventional patient care. The first set of specific aims include building and then physically testing this unique High Speed Angiography (HSAngio) system, enabling the evaluation of its performance on 3D printed phantoms to characterize detailed blood flow at reasonable radiation doses. The research design is to acquire larger 1000 fps single-photon-counting imaging detectors (Xcounter, by Direct Conversion) and, for a test biplane angiography system with standard x-ray sources, add these detectors so they can be brought, by a motorized changer, into the FOV for evaluation. A special contrast injector will be built and synchronized with the high speed image acquisitions. Images of both non-uniform contrast media globs and contrast labeled microsphere particles will be recorded to enable determination of flow streamlines and velocity distributions from the x-ray particle image velocimetry (X-PIV). These will result in determinations of wall shear stress and proper endovascular device function for use with the second set of specific aims to investigate the detailed flow patterns. These can be compared with those from the theoretical methods of computer fluid dynamics (CFD). Assessing the compromise between radiation dose and optimal dynamic imaging is also part of this set of specific aims. Finally, the third set of specific aims are to rigorously evaluate with our clinical collaborators the potential impact of the new availability of high temporal resolution imaging sequences quantitatively, semi-quantitatively and qualitatively of various procedures carried out on 3D printed patient-specific phantoms. We expect to rigorously test the HSAngio system on patient-specific pathological phantoms to evaluate the potential impact on clinical decision making primarily in neuro-endo vascular procedures such as treatment of and predictions for ischemic stroke due to vasospasm following hemorrhagic stroke. Finally, we will conclude by considering designs for future actual clinical implementation involving more advanced detector designs as well as the potential for wider applications such as to cardiovascular procedures. The results of this project should lead toward future clinical testing of this new imaging concept with the capability to vastly improve vascular image-guided interventional procedures by providing clinicians, even while treating the patient, to visualize for the first time the intricate details of blood flow that can be so crucial to the determination of clinical procedure outcome. We expect that, just as our previous high-spatial-resolution-detector NIH- funded project has been translated to practice, this HSAngio project will eventually become the standard state-of-the art in diagnostic and interventional imaging as well.
7.项目摘要 长期目标是提供前所未有的每秒1000帧的血管造影术,基于单次成像, 光子计数探测器,但具有标准的X射线源(目前对于 临床医生)以实现改进的诊断和介入患者护理。第一组具体目标 包括构建和物理测试这种独特的高速血管造影(HSAngio)系统, 能够评估其在3D打印体模上的性能,以表征详细的血流 在合理的辐射剂量下本研究的目的是获得更大的1000 fps单光子计数 成像探测器(Xcounter,通过直接转换),对于测试双平面血管造影系统, 标准x射线源,添加这些探测器,以便它们可以通过电动转换器进入 用于评估的FOV。将建立一个特殊的对比注射器,并与高速图像同步 收购。不均匀造影剂球和造影剂标记微球的图像 颗粒将被记录,以便能够确定流动流线和速度分布, X射线粒子图像测速(X-PIV)。这将导致壁面剪应力的测定, 适当的血管内器械功能,用于第二组特定目的,以研究 详细的流动模式。这些结果可以与计算机理论方法的结果相比较 流体动力学(CFD)。评估辐射剂量和最佳动态成像之间的折衷 也是这一系列具体目标的一部分。最后,第三组具体目标是严格评估 与我们的临床合作者,高时间分辨率的新可用性的潜在影响, 所进行的各种手术的定量、半定量和定性成像序列 3D打印的病人专用模型我们希望严格测试HSAngio系统, 患者特异性病理幻影,以评价对临床决策的潜在影响 主要用于神经血管内手术,例如缺血性中风的治疗和预测 因为出血性中风后的血管痉挛最后,我们将通过考虑以下设计来结束: 未来的实际临床实施涉及更先进的探测器设计以及潜在的 用于更广泛的应用,例如心血管手术。该项目的成果将导致 这一新的成像概念的未来临床试验具有极大地改善血管 通过为临床医生提供图像引导的介入手术,即使在治疗患者时, 第一次可视化血液流动的复杂细节,这对确定 临床手术结果。我们希望,就像我们之前的高空间分辨率探测器NIH一样, 资助的项目已经转化为实践,这个HSAngio项目最终将成为 诊断和介入成像的标准技术水平。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEPHEN RUDIN其他文献

STEPHEN RUDIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEPHEN RUDIN', 18)}}的其他基金

High Speed Angiography at 1000 frames per second
每秒 1000 帧的高速血管造影
  • 批准号:
    10225543
  • 财政年份:
    2020
  • 资助金额:
    $ 65.03万
  • 项目类别:
High Speed Angiography at 1000 frames per second
每秒 1000 帧的高速血管造影
  • 批准号:
    10640243
  • 财政年份:
    2020
  • 资助金额:
    $ 65.03万
  • 项目类别:
High Speed Angiography at 1000 frames per second
每秒 1000 帧的高速血管造影
  • 批准号:
    10032691
  • 财政年份:
    2020
  • 资助金额:
    $ 65.03万
  • 项目类别:
Solid State X-ray Image Intensifier Development
固态X射线图像增强器的开发
  • 批准号:
    7437539
  • 财政年份:
    2008
  • 资助金额:
    $ 65.03万
  • 项目类别:
Solid State X-ray Image Intensifier Development
固态X射线图像增强器的开发
  • 批准号:
    8055406
  • 财政年份:
    2008
  • 资助金额:
    $ 65.03万
  • 项目类别:
Solid State X-ray Image Intensifier Development
固态X射线图像增强器的开发
  • 批准号:
    7799725
  • 财政年份:
    2008
  • 资助金额:
    $ 65.03万
  • 项目类别:
Solid State X-ray Image Intensifier Development
固态X射线图像增强器的开发
  • 批准号:
    7569510
  • 财政年份:
    2008
  • 资助金额:
    $ 65.03万
  • 项目类别:
Radiographic guidance of new cerebral aneurysm stent
新型脑动脉瘤支架的影像引导
  • 批准号:
    6729695
  • 财政年份:
    2004
  • 资助金额:
    $ 65.03万
  • 项目类别:
Radiographic guidance of new cerebral aneurysm stent
新型脑动脉瘤支架的影像引导
  • 批准号:
    6884048
  • 财政年份:
    2004
  • 资助金额:
    $ 65.03万
  • 项目类别:
Radiographic guidance of new cerebral aneurysm stent
新型脑动脉瘤支架的影像引导
  • 批准号:
    7222689
  • 财政年份:
    2004
  • 资助金额:
    $ 65.03万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.03万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.03万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 65.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 65.03万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 65.03万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 65.03万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 65.03万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 65.03万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 65.03万
  • 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
  • 批准号:
    BB/X013049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 65.03万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了