Predicting Breast Cancer Risk after Benign Percutaneous Biopsy

良性经皮活检后预测乳腺癌风险

基本信息

  • 批准号:
    10430124
  • 负责人:
  • 金额:
    $ 63.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-05 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Project Abstract More than one million women are diagnosed with benign breast disease (BBD) by percutaneous biopsy annually in the U.S. and would benefit from improved breast cancer (BC) risk information as they face screening and prevention decisions. BBD is associated with increases in BC risk, ranging from 1.5-2.0 times for least severe categories to fourfold for most severe types. However, these risks apply to groups of women, not individuals, and individual risk varies considerably within BBD categories. Further, we have shown that breast cancer (BC) risk prediction models, such as the “Gail Model”, perform poorly among women with BBD. Previously, we developed the BBD-BC model for surgical biopsies, which provides individual risk estimates based on self-reported factors, detailed characteristics of BBD extent and severity, and assessment of involution (shrinkage and disappearance) of surrounding histologic structures (terminal duct lobular units (TDLUs)) from which most BC precursors arise. BBD-BC outperforms the Gail Model in predicting BC risk. However, given that radiologically-guided small (percutaneous) biopsies have largely replaced surgical biopsies for diagnosis, a new model based on this biopsy approach is needed. Further, the emergence of mammographic density as an important BC risk factor, development of novel methods to assess TDLU involution and increased use of biomarkers in routinely processed clinical samples offer an opportunity to develop an improved BC risk prediction tool for women with percutaneous biopsy diagnoses of BBD. The goal of this project is to build a BC risk prediction tool for women with BBD diagnosed on percutaneous needle biopsy that could be validated in diverse populations and implemented clinically. We propose to develop a cohort at Mayo that includes >7,000 women who were diagnosed with BBD on a percutaneous biopsy of whom >400 later developed BC. We will develop a model to predict BC that includes factors in the BBD-BC model for surgical biopsies. We will also assess mammographic density, measured as a volume and area, using validated methods. We will identify immunohistochemical markers that can be applied to BBD biopsies to predict future risk of developing BC and evaluate novel NanoString RNA assays, which measure expression of related genes as composite “signatures” reflecting cancer-like characteristics, proliferation, and a mutation-like score for the important TP53 tumor suppressor gene. Finally, we will develop an epidemiologic “case-cohort” that includes a random subset of women from the full cohort (n~500) and all the women that developed invasive BC (n~250). We will evaluate BC risk prediction in this case-cohort of 750 women to evaluate performance of risk models without biomarkers and with biomarkers using novel machine learning approaches that offer strengths compared with more typical statistical models. Using these data, we will build an absolute risk prediction model for the full cohort that can be tested in other populations.
项目摘要 100多万妇女通过经皮活检确诊为良性乳腺疾病(BBD) 每年在美国,并将受益于改善的乳腺癌(BC)风险信息,因为他们面临 筛查和预防决策。BBD与BC风险增加相关,范围为1.5-2.0倍 对于最严重的类型,最轻的类别增加到四倍。然而,这些风险适用于女性群体, 不是个人,个人风险在BBD类别中差异很大。此外,我们已经表明, 乳腺癌(BC)风险预测模型,如“盖尔模型”,在患有BBD的女性中表现不佳。 在此之前,我们开发了用于手术活检的bbd-bc模型,该模型提供个体风险估计。 根据自我报告的因素,BBD程度和严重程度的详细特征,以及 周围组织结构(末端导管小叶单位)退化(萎缩和消失) (TDLU)),其中大多数BC前体产生于此。BBD-BC在预测BC风险方面优于Gail模型。 然而,鉴于放射引导的小(经皮)活组织检查在很大程度上取代了外科手术 为了诊断活检,需要一种基于这种活检方法的新模型。此外,出现了 乳腺X线密度作为乳腺癌的重要危险因素,开发评估TDLU的新方法 常规处理的临床样本中生物标记物的退化和使用的增加提供了一个机会 为经皮活检诊断为BBD的女性开发一种改进的BC风险预测工具。这个 该项目的目标是为经皮针诊断为BBD的女性建立BC风险预测工具 可在不同人群中验证并在临床上实施的活组织检查。我们建议开发一种 Mayo的队列包括7,000名在经皮活检中被诊断患有BBD的女性 >400后来开发了公元前。我们将开发一个模型来预测BC,该模型包括以下BBD-BC模型中的因素 外科活组织检查。我们还将评估乳房X光照相密度,以体积和面积衡量,使用 经过验证的方法。我们将确定可应用于BBD活检的免疫组织化学标记物 预测未来发展为BC的风险并评估新的纳米串RNA检测方法,该方法测量 相关基因作为反映癌症样特征、增殖和突变样特征的复合“标志” 重要的肿瘤抑制基因TP53的评分。最后,我们将制定一个流行病学的“病例队列”。 这包括整个队列(n~500)中的随机女性子集和所有发展为 侵袭性BC(n~250)。在这种情况下,我们将评估BC风险预测-750名女性的队列评估 使用新型机器学习方法对无生物标记物和有生物标记物的风险模型的性能 与更典型的统计模型相比,这些模型提供了优势。使用这些数据,我们将建立一个绝对的 可在其他人群中测试的全队列风险预测模型。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automated quantification of levels of breast terminal duct lobular (TDLU) involution using deep learning.
  • DOI:
    10.1038/s41523-021-00378-7
  • 发表时间:
    2022-01-19
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    de Bel T;Litjens G;Ogony J;Stallings-Mann M;Carter JM;Hilton T;Radisky DC;Vierkant RA;Broderick B;Hoskin TL;Winham SJ;Frost MH;Visscher DW;Allers T;Degnim AC;Sherman ME;van der Laak JAWM
  • 通讯作者:
    van der Laak JAWM
Breast Cancer Risk and Use of Nonsteroidal Anti-inflammatory Agents After a Benign Breast Biopsy.
Immune Responses and Risk of Triple-negative Breast Cancer: Implications for Higher Rates among African American Women.
  • DOI:
    10.1158/1940-6207.capr-19-0562
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Ogony, Joshua W.;Radisky, Derek C.;Ruddy, Kathryn J.;Goodison, Steven;Wickland, Daniel P.;Egan, Kathleen M.;Knutson, Keith L.;Asmann, Yan W.;Sherman, Mark E.
  • 通讯作者:
    Sherman, Mark E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy C Degnim其他文献

Amy C Degnim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy C Degnim', 18)}}的其他基金

Involution-based biomarkers of breast cancer risk
基于复合的乳腺癌风险生物标志物
  • 批准号:
    10246253
  • 财政年份:
    2020
  • 资助金额:
    $ 63.92万
  • 项目类别:
Biomarkers to Improve Targeting of Breast Cancer Prevention in Women with Atypical Hyperplasia
生物标志物可提高非典型增生女性乳腺癌预防的针对性
  • 批准号:
    10542756
  • 财政年份:
    2020
  • 资助金额:
    $ 63.92万
  • 项目类别:
Involution-based biomarkers of breast cancer risk
基于复合的乳腺癌风险生物标志物
  • 批准号:
    9886777
  • 财政年份:
    2020
  • 资助金额:
    $ 63.92万
  • 项目类别:
Involution-based biomarkers of breast cancer risk
基于复合的乳腺癌风险生物标志物
  • 批准号:
    10627873
  • 财政年份:
    2020
  • 资助金额:
    $ 63.92万
  • 项目类别:
Biomarkers to Improve Targeting of Breast Cancer Prevention in Women with Atypical Hyperplasia
生物标志物可提高非典型增生女性乳腺癌预防的针对性
  • 批准号:
    9884497
  • 财政年份:
    2020
  • 资助金额:
    $ 63.92万
  • 项目类别:
Involution-based biomarkers of breast cancer risk
基于复合的乳腺癌风险生物标志物
  • 批准号:
    10722154
  • 财政年份:
    2020
  • 资助金额:
    $ 63.92万
  • 项目类别:
Involution-based biomarkers of breast cancer risk
基于复合的乳腺癌风险生物标志物
  • 批准号:
    10406367
  • 财政年份:
    2020
  • 资助金额:
    $ 63.92万
  • 项目类别:
Predicting Breast Cancer Risk after Benign Percutaneous Biopsy
良性经皮活检后预测乳腺癌风险
  • 批准号:
    9900922
  • 财政年份:
    2019
  • 资助金额:
    $ 63.92万
  • 项目类别:
Predicting Breast Cancer Risk after Benign Percutaneous Biopsy
良性经皮活检后预测乳腺癌风险
  • 批准号:
    10411403
  • 财政年份:
    2018
  • 资助金额:
    $ 63.92万
  • 项目类别:
Predicting Breast Cancer Risk after Benign Percutaneous Biopsy
良性经皮活检后预测乳腺癌风险
  • 批准号:
    10194417
  • 财政年份:
    2018
  • 资助金额:
    $ 63.92万
  • 项目类别:

相似国自然基金

层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
  • 批准号:
    2021JJ40433
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
  • 批准号:
    32001603
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
AREA国际经济模型的移植.改进和应用
  • 批准号:
    18870435
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
  • 批准号:
    2322614
  • 财政年份:
    2024
  • 资助金额:
    $ 63.92万
  • 项目类别:
    Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
  • 批准号:
    ES/Z50290X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.92万
  • 项目类别:
    Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
  • 批准号:
    NE/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.92万
  • 项目类别:
    Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
  • 批准号:
    534092360
  • 财政年份:
    2024
  • 资助金额:
    $ 63.92万
  • 项目类别:
    Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 63.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 63.92万
  • 项目类别:
    Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
  • 批准号:
    24K20765
  • 财政年份:
    2024
  • 资助金额:
    $ 63.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 63.92万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
  • 批准号:
    2317873
  • 财政年份:
    2024
  • 资助金额:
    $ 63.92万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 63.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了