3D Freeform Ice Printing to Create Tissues with Biomimetic Vasculature
3D 自由形式冰打印可创建具有仿生脉管系统的组织
基本信息
- 批准号:10432990
- 负责人:
- 金额:$ 17.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAreaArtificial tissueBiocompatible MaterialsBiological AssayBiomimeticsBlood VesselsBlood flowCaliberCell Culture TechniquesCell DeathCell SurvivalCellsCellular AssayCollaborationsCollagenComplexDataDermalDevelopmentDiffusionElectron MicroscopyEndothelial CellsEndotheliumEngineeringExcisionFibroblastsFreeze DryingFutureGeometryGoalsHeartHumanIceImageImmunofluorescence MicroscopyLifeLiquid substanceLiverMechanicsMicrofabricationNatural regenerationNutrientOrganOrgan TransplantationPatientsPharmacologic SubstancePhysiologicalPorosityPrintingProcessPropertyPublicationsPublishingRecording of previous eventsRegenerative MedicineReproducibilityResearchResearch InfrastructureSavingsScientistShapesSkinSkin TissueSpatial DistributionStructureStudentsSystemTechniquesTestingThickTimeTissue EngineeringTissue constructsTissuesTransplantationVisionWaterWaxesWorkacetyl-LDLbaseclinically relevantdoctoral studentexperienceexperimental studyhuman tissueimplantationinnovationknowledge of resultsmicrosystemsmimeticsnovelorgan on a chipoxygen transportpathogenresponsescaffoldsublimationtissue support frametransplantation medicineuptakewasting
项目摘要
PROJECT SUMMARY
For more than three decades, scientists have aspired to create engineered tissues that mimic the remarkable
physiological and functional properties of natural tissues. Such tissues and organs can be used not only for
transplantation to save lives but also for ex vivo tissue-on-a-chip approaches to test pharmaceuticals the
response to pathogens. However, we still lack the ability to create tissues with three-dimensional tissue-mimetic
vasculature. Without 3D, smooth branched, and multi-scale vascular networks, which facilitate nutrient/oxygen
transport, engineered full-thickness tissues will not be fully functional due to cell death limited by diffusion. As
such, biomimetic vasculature networks are very important for viable and clinically relevant tissue constructs.
We propose an innovative approach to address the challenge of fabricating tissue constructs with biomimetic
vasculature. Our approach involves 3D freeform ice printing of sacrificial vasculature templates and uses them
to fabricate scaffolds for creating biomimetic vascularized tissue constructs. Our novel 3D freeform (as opposed
to layer-by-layer) ice printing process uniquely enables fabricating ice templates that mimic the geometry of the
actual vasculature, including complex shapes, circular cross-sections, and varying diameters and branched
structures with smooth transitions. Our fundamental hypothesis is that our 3D ice printing technique enables the
creation of tissue scaffolds with biomimetic 3D vasculature networks. In this R21 project, we aim to develop our
3D ice printing-based vascularized tissue fabrication platform and to demonstrate its feasibility by creating
human-skin tissue-on-a-chip systems with 3D biomimetic vasculature that also in the future can be used for
tissue implantation. Our preliminary results show our general ability to print multi-scale ice structures, fabricate
porous scaffolds with vasculature conduits, and grow endothelial and fibroblasts cells on porous dissolvable
scaffolds. The proposed studies aim to show the feasibility of our approach towards creating vascularized
tissues. Our approach, based on our preliminary data and published experience, will involve two Specific Aims:
Aim 1 will focus on the development of our 3D ice printing technique to reproducibly create defined biomimetic
vasculature within porous tissue scaffolds. Aim 2 will demonstrate our approach for creating 3D vascularized
tissue-on-a-chip constructs using the fabricated scaffolds and multiple cell systems.
Our interdisciplinary project team combines complementary expertise and research infrastructure that
directly addresses the proposed project. The PIs have a decade-long history of strong collaboration, including
co-advised PhD students and multiple co-authored publications. We expect the results of this work will bring the
ability to create tissue scaffolds with 3D biomimetic vasculature toward creating many different vascularized
tissues and organs in the future. This will have a profound effect on the tissue engineering field, impacting tissue-
on-a-chip, patient-specific organ transplantation, and regenerative medicine areas.
项目总结
三十多年来,科学家们一直渴望创造出模仿非凡生物的工程化组织
天然组织的生理和功能特性。这种组织和器官不仅可以用于
移植以拯救生命,也用于体外芯片上组织方法来测试药物
对病原体的反应。然而,我们仍然缺乏创造具有三维组织模拟的组织的能力
脉管系统。没有3D、光滑的分支和多尺度的血管网络,这有助于营养/氧气
由于细胞死亡受到扩散的限制,工程化的全层组织将不能完全发挥功能。AS
这样的仿生血管网络对于可行的和临床相关的组织结构非常重要。
我们提出了一种创新的方法来解决用仿生技术制造组织结构的挑战
脉管系统。我们的方法涉及牺牲血管模板的3D自由形式冰打印并使用它们
制作用于创建仿生血管组织构造物的支架。我们新颖的3D自由形式(与之相反
到逐层)冰打印工艺独特地能够制造模仿
实际的血管系统,包括复杂的形状、圆形的横截面、不同的直径和分支
具有平滑过渡的结构。我们的基本假设是,我们的3D冰块打印技术使
创建具有仿生3D血管网络的组织支架。在这个R21项目中,我们的目标是开发我们的
基于3D冰块打印的血管组织构建平台及其可行性
具有3D仿生血管系统的人体皮肤芯片上组织系统,在未来也可以用于
组织植入。我们的初步结果表明,我们通常有能力打印多尺度的冰结构,制造
具有血管导管的多孔支架,并在可溶解的多孔上生长内皮细胞和成纤维细胞
脚手架。拟议的研究旨在显示我们的方法的可行性,以创造血管
纸巾。根据我们的初步数据和公布的经验,我们的方法将涉及两个具体目标:
目标1将专注于我们的3D冰打印技术的开发,以重现定义的仿生技术
多孔组织支架内的血管构筑。目标2将演示我们创建3D血管化的方法
芯片上的组织构建使用制造的支架和多个细胞系统。
我们的跨学科项目团队结合了互补的专业知识和研究基础设施,
直接涉及提议的项目。私人投资机构有长达十年的强大合作历史,包括
共同为博士生提供建议,并出版了多本合著的出版物。我们期待这项工作的结果将带来
能够创建具有3D仿生血管的组织支架,以创建许多不同的血管化
未来的组织和器官。这将对组织工程领域产生深远的影响,影响组织-
芯片上、患者特定的器官移植和再生医学领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Burak O. Ozdoganlar其他文献
Interfacing Three-Dimensional Curved Structures and Cellular Adhesion
- DOI:
10.1016/j.bpj.2010.12.3581 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Mary E. Wilson;Nithyanand Kota;Burak O. Ozdoganlar;Yadong Wang;Donna B. Stolz;Philip R. LeDuc - 通讯作者:
Philip R. LeDuc
Burak O. Ozdoganlar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Burak O. Ozdoganlar', 18)}}的其他基金
3D Freeform Ice Printing to Create Tissues with Biomimetic Vasculature
3D 自由形式冰打印可创建具有仿生脉管系统的组织
- 批准号:
10584519 - 财政年份:2022
- 资助金额:
$ 17.36万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 17.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 17.36万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 17.36万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 17.36万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 17.36万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 17.36万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 17.36万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant














{{item.name}}会员




