3D Freeform Ice Printing to Create Tissues with Biomimetic Vasculature

3D 自由形式冰打印可创建具有仿生脉管系统的组织

基本信息

  • 批准号:
    10584519
  • 负责人:
  • 金额:
    $ 13.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY For more than three decades, scientists have aspired to create engineered tissues that mimic the remarkable physiological and functional properties of natural tissues. Such tissues and organs can be used not only for transplantation to save lives but also for ex vivo tissue-on-a-chip approaches to test pharmaceuticals the response to pathogens. However, we still lack the ability to create tissues with three-dimensional tissue-mimetic vasculature. Without 3D, smooth branched, and multi-scale vascular networks, which facilitate nutrient/oxygen transport, engineered full-thickness tissues will not be fully functional due to cell death limited by diffusion. As such, biomimetic vasculature networks are very important for viable and clinically relevant tissue constructs. We propose an innovative approach to address the challenge of fabricating tissue constructs with biomimetic vasculature. Our approach involves 3D freeform ice printing of sacrificial vasculature templates and uses them to fabricate scaffolds for creating biomimetic vascularized tissue constructs. Our novel 3D freeform (as opposed to layer-by-layer) ice printing process uniquely enables fabricating ice templates that mimic the geometry of the actual vasculature, including complex shapes, circular cross-sections, and varying diameters and branched structures with smooth transitions. Our fundamental hypothesis is that our 3D ice printing technique enables the creation of tissue scaffolds with biomimetic 3D vasculature networks. In this R21 project, we aim to develop our 3D ice printing-based vascularized tissue fabrication platform and to demonstrate its feasibility by creating human-skin tissue-on-a-chip systems with 3D biomimetic vasculature that also in the future can be used for tissue implantation. Our preliminary results show our general ability to print multi-scale ice structures, fabricate porous scaffolds with vasculature conduits, and grow endothelial and fibroblasts cells on porous dissolvable scaffolds. The proposed studies aim to show the feasibility of our approach towards creating vascularized tissues. Our approach, based on our preliminary data and published experience, will involve two Specific Aims: Aim 1 will focus on the development of our 3D ice printing technique to reproducibly create defined biomimetic vasculature within porous tissue scaffolds. Aim 2 will demonstrate our approach for creating 3D vascularized tissue-on-a-chip constructs using the fabricated scaffolds and multiple cell systems. Our interdisciplinary project team combines complementary expertise and research infrastructure that directly addresses the proposed project. The PIs have a decade-long history of strong collaboration, including co-advised PhD students and multiple co-authored publications. We expect the results of this work will bring the ability to create tissue scaffolds with 3D biomimetic vasculature toward creating many different vascularized tissues and organs in the future. This will have a profound effect on the tissue engineering field, impacting tissue- on-a-chip, patient-specific organ transplantation, and regenerative medicine areas.
项目总结

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Burak O. Ozdoganlar其他文献

Interfacing Three-Dimensional Curved Structures and Cellular Adhesion
  • DOI:
    10.1016/j.bpj.2010.12.3581
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Mary E. Wilson;Nithyanand Kota;Burak O. Ozdoganlar;Yadong Wang;Donna B. Stolz;Philip R. LeDuc
  • 通讯作者:
    Philip R. LeDuc

Burak O. Ozdoganlar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Burak O. Ozdoganlar', 18)}}的其他基金

3D Freeform Ice Printing to Create Tissues with Biomimetic Vasculature
3D 自由形式冰打印可创建具有仿生脉管系统的组织
  • 批准号:
    10432990
  • 财政年份:
    2022
  • 资助金额:
    $ 13.95万
  • 项目类别:

相似海外基金

Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
  • 批准号:
    22K13777
  • 财政年份:
    2022
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
  • 批准号:
    10045111
  • 财政年份:
    2022
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
  • 批准号:
    2749141
  • 财政年份:
    2022
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 13.95万
  • 项目类别:
    College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 13.95万
  • 项目类别:
    College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
  • 批准号:
    10801667
  • 财政年份:
    2019
  • 资助金额:
    $ 13.95万
  • 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1738138
  • 财政年份:
    2017
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
  • 批准号:
    17K18852
  • 财政年份:
    2017
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
  • 批准号:
    1612567
  • 财政年份:
    2016
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1621732
  • 财政年份:
    2016
  • 资助金额:
    $ 13.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了