Reproducible, Unbiased Ligand Identification Assisted by Artificial Intelligence and Development of Ligand Reference Libraries
人工智能辅助的可重复、公正的配体鉴定和配体参考文库的开发
基本信息
- 批准号:10432049
- 负责人:
- 金额:$ 56.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-17 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvisory CommitteesAlgorithmsArtificial IntelligenceBenchmarkingBinding SitesBioinformaticsBiologicalBiologyBiomedical ResearchCategoriesCognitiveComplexCryoelectron MicroscopyCrystallizationDataData SetDescriptorDevelopmentDiseaseDockingDrug DesignDrug TargetingEffectivenessElectron MicroscopyEnsureFAIR principlesGenerationsHumanIntuitionIonsLibrariesLigand BindingLigandsMachine LearningMethodologyMethodsModelingMolecularMolecular ConformationMolecular StructureNucleic Acid BindingOntologyPeptidesPharmaceutical PreparationsPharmacotherapyProteinsProtocols documentationPublic HealthRecommendationReproducibilityResearchResolutionResourcesRoentgen RaysSoftware ToolsStandardizationStratificationStructural ModelsStructureSystemTeaching MaterialsTechniquesTrainingUncertaintyUpdateValidationX-Ray Crystallographybasecomputational chemistrydensitydrug discoveryelectron densityexperienceimprovedinhibitormachine learning algorithmmacromoleculenovelonline resourcesimulationsmall moleculesoftware developmentstemthree dimensional structuretool
项目摘要
Our current understanding of the molecular mechanisms of disease and structure-based design
of drugs for treatment, rely on experimentally determined 3D structures of proteins and other
macromolecules complexed with small molecule ligands. Many of these structures have direct
relevance to public health, especially complexes of drug targets with drugs, inhibitors, substrates,
or allosteric effectors. Yet, structure-based drug discovery is severely complicated and hindered
by experimental bias and the shortcomings of current methods of experimental ligand
identification, which often result in misidentified, missing, or misplaced ligands. The propagation
of erroneous structures combined with an increased accessibility to structural data not only
thwarts reproducibility in biomedical research and drug discovery, but also diverts valuable
resources down doomed research avenues. We will leverage our extensive experience validating
and refining ligand binding sites to generate ligand reference libraries that will be made publically
available on a new web resource dedicated to the interaction of small molecules and
macromolecules. These libraries can be used in many downstream applications, such as drug
design, computational chemistry, biology, and bioinformatics. We will utilize recent
technological advances in machine learning in conjunction with existing tools to create a
standardized protocol for density interpretation and unbiased, reproducible ligand
identification. This pipeline will not only be able identify and model ligands in unassigned density
fragments, but also be able to detect and correct suboptimally refined ligands in existing
structures. As the proposed AI will be free from cognitive bias, it should alleviate the most severe
problems in structure-based drug design. Because improperly interpreted structures can have a
significant deleterious ripple effect, we will experimentally verify select biomedically important
structures with dubious experimental support for critical small molecules using use X-ray
crystallography or electron microscopy.
我们目前对疾病分子机制的理解和基于结构的设计
用于治疗的药物,依赖于实验确定的蛋白质和其他
大分子与小分子配体形成络合。许多这样的结构都有直接的
与公众健康有关,特别是药物靶标与药物、抑制剂、底物、
或变构效应器。然而,基于结构的药物发现是极其复杂和困难的。
由实验偏倚和现行实验配基方法的不足
识别,这往往导致识别错误、丢失或放错了配基。传播
错误的结构与增加的结构数据的可访问性相结合,不仅
阻碍了生物医学研究和药物发现的重复性,但也转移了有价值的
资源枯竭注定是一条研究之路。我们将利用我们丰富的经验来验证
以及提纯配基结合位点以生成将公开制作的配基参考库
可在一个新的网络资源上获得,该资源致力于小分子和
大分子。这些文库可用于许多下游应用,如药物
设计、计算化学、生物学和生物信息学。我们将利用最近的
机器学习中的技术进步与现有工具相结合,以创建
密度解释的标准化协议和无偏见、可重复的配基
身份证明。这条管道将不仅能够识别和模拟未分配密度的配体
片段,但也能够检测和纠正现有的次优精炼配体
结构。由于拟议的人工智能将不存在认知偏见,它应该会缓解最严重的
基于结构的药物设计中存在的问题。因为未正确解释的结构可能具有
显著的有害涟漪效应,我们将通过实验验证选定的生物医学重要
利用X射线对关键小分子具有可疑实验支持的结构
结晶学或电子显微镜。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid response to emerging biomedical challenges and threats.
- DOI:10.1107/s2052252521003018
- 发表时间:2021-05-01
- 期刊:
- 影响因子:3.9
- 作者:Grabowski M;Macnar JM;Cymborowski M;Cooper DR;Shabalin IG;Gilski M;Brzezinski D;Kowiel M;Dauter Z;Rupp B;Wlodawer A;Jaskolski M;Minor W
- 通讯作者:Minor W
Recognizing and validating ligands with CheckMyBlob.
- DOI:10.1093/nar/gkab296
- 发表时间:2021-07-02
- 期刊:
- 影响因子:14.9
- 作者:Brzezinski D;Porebski PJ;Kowiel M;Macnar JM;Minor W
- 通讯作者:Minor W
Covid-19.bioreproducibility.org: A web resource for SARS-CoV-2-related structural models.
- DOI:10.1002/pro.3959
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Brzezinski D;Kowiel M;Cooper DR;Cymborowski M;Grabowski M;Wlodawer A;Dauter Z;Shabalin IG;Gilski M;Rupp B;Jaskolski M;Minor W
- 通讯作者:Minor W
Structural biology and public health response to biomedical threats.
- DOI:10.1063/4.0000186
- 发表时间:2023-05
- 期刊:
- 影响因子:2.8
- 作者:Lenkiewicz, Joanna;Bijak, Vanessa;Poonuganti, Shrisha;Szczygiel, Michal;Gucwa, Michal;Murzyn, Krzysztof;Minor, Wladek
- 通讯作者:Minor, Wladek
Continuous Validation Across Macromolecular Structure Determination Process.
整个大分子结构测定过程的连续验证。
- DOI:10.5940/jcrsj.65.10
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bijak,Vanessa;Gucwa,Michal;Lenkiewicz,Joanna;Murzyn,Krzysztof;Cooper,DavidR;Minor,Wladek
- 通讯作者:Minor,Wladek
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WLADEK MINOR其他文献
WLADEK MINOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WLADEK MINOR', 18)}}的其他基金
Reproducible, Unbiased Ligand Identification Assisted by Artificial Intelligence and Development of Ligand Reference Libraries
人工智能辅助的可重复、公正的配体鉴定和配体参考文库的开发
- 批准号:
10019572 - 财政年份:2019
- 资助金额:
$ 56.12万 - 项目类别:
Reproducible, Unbiased Ligand Identification Assisted by Artificial Intelligence and Development of Ligand Reference Libraries
人工智能辅助的可重复、公正的配体鉴定和配体参考文库的开发
- 批准号:
10200091 - 财政年份:2019
- 资助金额:
$ 56.12万 - 项目类别:
Metal binding sites in macromolecular structures
大分子结构中的金属结合位点
- 批准号:
9008644 - 财政年份:2016
- 资助金额:
$ 56.12万 - 项目类别:
Metal binding sites in macromolecular structures
大分子结构中的金属结合位点
- 批准号:
9233159 - 财政年份:2016
- 资助金额:
$ 56.12万 - 项目类别:
Integrated resource for reproducibility in macromolecular crystallography
大分子晶体学重现性的综合资源
- 批准号:
9280987 - 财政年份:2015
- 资助金额:
$ 56.12万 - 项目类别:
X-ray data analysis in the presence of structural variability
存在结构变异时的 X 射线数据分析
- 批准号:
9147618 - 财政年份:2015
- 资助金额:
$ 56.12万 - 项目类别:
Integrated resource for reproducibility in macromolecular crystallography
大分子晶体学重现性的综合资源
- 批准号:
8875830 - 财政年份:2015
- 资助金额:
$ 56.12万 - 项目类别:
X-ray data analysis in the presence of structural variability
存在结构变异时的 X 射线数据分析
- 批准号:
9552204 - 财政年份:2015
- 资助金额:
$ 56.12万 - 项目类别:
Integrated resource for reproducibility in macromolecular crystallography
大分子晶体学重现性的综合资源
- 批准号:
9069902 - 财政年份:2015
- 资助金额:
$ 56.12万 - 项目类别:
Centers for High-Throughput Structure Determination
高通量结构测定中心
- 批准号:
8152878 - 财政年份:2010
- 资助金额:
$ 56.12万 - 项目类别:
相似海外基金
Toward a Political Theory of Bioethics: Participation, Representation, and Deliberation on Federal Bioethics Advisory Committees
迈向生命伦理学的政治理论:联邦生命伦理学咨询委员会的参与、代表和审议
- 批准号:
0451289 - 财政年份:2005
- 资助金额:
$ 56.12万 - 项目类别:
Standard Grant














{{item.name}}会员




