Structure and Function of a Eukaryotic Centromere
真核着丝粒的结构和功能
基本信息
- 批准号:10432882
- 负责人:
- 金额:$ 52.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1983
- 资助国家:美国
- 起止时间:1983-07-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAnaphaseAneuploidyAppearanceBehaviorBinding SitesBiochemicalBiochemical ProcessBiophysical ProcessCell NucleolusCell divisionCellsCentromereCharacteristicsChromatinChromatin LoopChromosome BreakageChromosome SegregationChromosome StructuresChromosomesComplexDNADNA SequenceDefectEngineeringEnsureEntropyEquus caballusFission YeastFlowersFluorescent ProbesFoundationsGoalsHumanKinetochoresLaboratoriesLeadLengthLinkMathematicsMechanicsMediatingMetabolismMetaphaseMicrotubulesMitosisMitotic spindleModelingMothsNonhomologous DNA End JoiningNuclearNucleoplasmPathway interactionsPeptidesPhasePhylogenyPhysicsPlantsPlus End of the MicrotubulePolymersPropertyProtein Complex SubunitProteinsRadialSeriesSignal TransductionSisterSister ChromatidSiteSolventsStructureSystemTemperatureTestingTimeYeastsarmbasebioimagingbiophysical propertiescancer cellcohesincohesioncomputerized toolscondensindensityexperiencefluorescence imagingflyforesthomologous recombinationin silicoinnovationinsightmicroscopic imagingmonomerrepairedsegregationself assemblysimulationsmall moleculetheories
项目摘要
Project Summary
Goals: The centromere serves as the binding site for the kinetochore and is essential for the
faithful segregation of chromosomes throughout cell division. The point centromere in yeast is
encoded by a ~115 bp specific DNA sequence, whereas regional centromeres span 6-10 kbp in
fission yeast to 5-10 Mbp in human. Despite the apparent diversity in centromere organization,
the distance between sister kinetochores in metaphase ranges from 800 nm to 1,000 nm in
yeast, worms, flies, flower moths, plants, horses and human. Understanding the physical
structure of centromere chromatin (pericentromere in yeast, defined as the chromatin between
sister kinetochores) will provide fundamental insights how centromere DNA is organized into a
stiff spring that resists microtubule pulling forces during mitosis.
Approach: Our laboratory develops computational tools to interrogate the structure and
dynamics of hundreds of kilobase pairs of pericentromeric DNA. Together with experimentally
obtained images of fluorescent probes of pericentromeric structure (e.g. pericentromere DNA,
cohesin, condensin) we make quantitative comparisons between simulations and experimental
results through transformation of in silico models into microscope images (model convolution).
We will test the proposal that the mechanism for building tension between sister kinetochores is
a chromatin bottlebrush organized by the loop-extruding proteins condensin and cohesin. The
bottlebrush provides a biophysical mechanism that transforms pericentromeric chromatin into a
spring due to the steric repulsion between radial loops. The bottlebrush as an organizing
principle for chromosome organization has emerged from multiple approaches in the field. We
will leverage the powerful features of chromosome engineering in yeast to explore the
consequences of reducing the number of centromeres, and exploit synthetic bottlebrushes and
statistical physics of polymer models to reveal basic principles linking bottlebrush structure to
the functional readout of force/tension.
Innovation: We will combine our experience in chromosome engineering and advanced
bioimaging in yeast with the expertise of collaborators in statistical physics and applied math
(Forest UNC-CH) and synthetic bio-inspired materials (Freeman UNC-CH). Testing our
hypotheses will elucidate important information about the organization and function of
centromeres, potentially providing a paradigm shifting foundation for the remarkable
conservation of distance between sister kinetochores throughout phylogeny.
项目摘要
目的:着丝粒作为着丝粒的结合位点,对染色体的功能至关重要。
在整个细胞分裂过程中染色体的忠实分离。酵母中的点着丝粒是
由约115 bp的特异性DNA序列编码,而区域着丝粒跨越6-10 kbp,
裂殖酵母在人类中的5-10 Mbp。尽管着丝粒组织有明显的多样性,
中期姐妹动粒之间的距离为800 nm至1,000 nm,
酵母、蠕虫、苍蝇、花蛾、植物、马和人类。理解物理
着丝粒染色质的结构(酵母中的近着丝粒,定义为
姐妹动粒)将提供基本的见解如何着丝粒DNA组织成一个
在有丝分裂过程中抵抗微管拉力的刚性弹簧。
方法:我们的实验室开发了计算工具来询问结构,
近着丝粒DNA的数百对酶的动力学。在实验上,
获得了着丝粒周围结构的荧光探针(例如着丝粒周围DNA,
cohesin,condensin),我们进行定量比较模拟和实验
通过将计算机模型转换为显微镜图像(模型卷积)获得结果。
我们将检验这样一种假设,即在姐妹动粒之间建立紧张关系的机制是
由环挤压蛋白质凝聚素和粘着素组织的染色质瓶刷。的
瓶刷提供了一种生物物理机制,将着丝粒周围染色质转化为
由于径向环之间的空间排斥而产生的弹簧。瓶刷作为一种组织
染色体组织的原理已经从该领域的多种方法中出现。我们
将利用酵母染色体工程的强大功能来探索
减少着丝粒数量的后果,并利用合成瓶刷,
聚合物模型的统计物理学,以揭示瓶刷结构与
力/张力的功能读数。
创新:我们将联合收割机结合我们在染色体工程方面的经验和先进的
利用统计物理学和应用数学方面的合作者的专业知识,
(Forest UNC-CH)和合成生物启发材料(Freeman UNC-CH)。测试我们
假设将阐明有关组织和功能的重要信息,
着丝粒,潜在地提供了一个范式转换的基础,
在整个生殖过程中保持姐妹动粒之间的距离。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kerry S Bloom其他文献
Kerry S Bloom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kerry S Bloom', 18)}}的其他基金
Structure and Function of a Eukaryotic Centromere
真核着丝粒的结构和功能
- 批准号:
8068043 - 财政年份:2010
- 资助金额:
$ 52.89万 - 项目类别:
2009 Motile and Contractile Systems Gordon Research Conference
2009 年运动和收缩系统戈登研究会议
- 批准号:
8101048 - 财政年份:2009
- 资助金额:
$ 52.89万 - 项目类别:
2009 Motile and Contractile Systems Gordon Research Conference
2009 年运动和收缩系统戈登研究会议
- 批准号:
7881697 - 财政年份:2009
- 资助金额:
$ 52.89万 - 项目类别:
2009 Motile and Contractile Systems Gordon Research Conference
2009 年运动和收缩系统戈登研究会议
- 批准号:
8300855 - 财政年份:2009
- 资助金额:
$ 52.89万 - 项目类别:
Structure and Function of a Eukaryotic Centromere
真核着丝粒的结构和功能
- 批准号:
7931475 - 财政年份:2009
- 资助金额:
$ 52.89万 - 项目类别:
2009 Motile and Contractile Systems Gordon Research Conference
2009 年运动和收缩系统戈登研究会议
- 批准号:
8545866 - 财政年份:2009
- 资助金额:
$ 52.89万 - 项目类别:
2009 Motile and Contractile Systems Gordon Research Conference
2009 年运动和收缩系统戈登研究会议
- 批准号:
7667081 - 财政年份:2009
- 资助金额:
$ 52.89万 - 项目类别:
相似国自然基金
RIF1蛋白在处理超细后期桥(ultrafine anaphase bridge)和保障基因组稳定的作用
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
The Anaphase Promoting Complex/Cyclosome and double-stranded DNA damage in S. cerevisiae
酿酒酵母中的后期促进复合物/环体和双链 DNA 损伤
- 批准号:
574890-2022 - 财政年份:2022
- 资助金额:
$ 52.89万 - 项目类别:
University Undergraduate Student Research Awards
Identification of protein phosphatases required for anaphase onset.
鉴定后期开始所需的蛋白磷酸酶。
- 批准号:
575128-2022 - 财政年份:2022
- 资助金额:
$ 52.89万 - 项目类别:
University Undergraduate Student Research Awards
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10797668 - 财政年份:2022
- 资助金额:
$ 52.89万 - 项目类别:
Characterization of molecular mechanisms governing budding yeast lifespan using small peptides that interact with the Anaphase Promoting Complex
使用与后期促进复合物相互作用的小肽来表征控制芽殖酵母寿命的分子机制
- 批准号:
RGPIN-2017-05478 - 财政年份:2022
- 资助金额:
$ 52.89万 - 项目类别:
Discovery Grants Program - Individual
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10345098 - 财政年份:2022
- 资助金额:
$ 52.89万 - 项目类别:
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10561625 - 财政年份:2022
- 资助金额:
$ 52.89万 - 项目类别:
Characterization of molecular mechanisms governing budding yeast lifespan using small peptides that interact with the Anaphase Promoting Complex
使用与后期促进复合物相互作用的小肽来表征控制芽殖酵母寿命的分子机制
- 批准号:
RGPIN-2017-05478 - 财政年份:2021
- 资助金额:
$ 52.89万 - 项目类别:
Discovery Grants Program - Individual
Characterization of mitochondrial organization, epigenomic regulation, and the Anaphase Promoting Complex in Progeria-driven premature senescence
早衰症驱动的过早衰老中线粒体组织、表观基因组调控和后期促进复合物的表征
- 批准号:
466918 - 财政年份:2021
- 资助金额:
$ 52.89万 - 项目类别:
Studentship Programs
The Role of the Anaphase Promoting Complex in Breast Cancer Progression
后期促进复合物在乳腺癌进展中的作用
- 批准号:
555539-2020 - 财政年份:2020
- 资助金额:
$ 52.89万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Unravelling the role of topoisomerase II beta binding protein 1 (TOPBP1) in the resolution of ultra-fine anaphase bridges.
揭示拓扑异构酶 II β 结合蛋白 1 (TOPBP1) 在解析超细后期桥中的作用。
- 批准号:
BB/T009608/1 - 财政年份:2020
- 资助金额:
$ 52.89万 - 项目类别:
Fellowship