Structure and Function of a Eukaryotic Centromere
真核着丝粒的结构和功能
基本信息
- 批准号:8068043
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:AneuploidyArchitectureCellsCentromereChromatinChromosomal InstabilityChromosome ArmChromosome SegregationChromosomesDNAElementsEngineeringEnsureHealthHumanKinetochoresLeadLifeLinkMicroscopyMicrotubulesMitosisMitotic spindleModelingMolecularPhylogenyProcessProteinsResearch PersonnelResolutionSaccharomyces cerevisiaeSaccharomycetalesSiteSolutionsStructureSystemTestingYeastsbasechromosome movementcohesincohesiondaughter cellneoplastic cellprogramssegregationsingle moleculetumorigenesis
项目摘要
DESCRIPTION (provided by applicant): Accurate segregation of duplicated chromosomes ensures that daughter cells get one and only one copy of each chromosome. Errors in chromosome segregation result in aneuploidy and have severe consequences on human health. Incorrect chromosome number and chromosomal instability are hallmarks of tumor cells. Hence, segregation errors are thought to be a major cause of tumorigenesis (Jallepalli and Lengauer, 2001; Yuen et al., 2005). A study of the mechanism of chromosome segregation is essential to understand the processes that can lead to errors. Tremendous progress has been made in recent years in identifying the proteins necessary for chromosome movement and segregation, but the mechanism and structure of critical force generating components and the molecular basis of centromere stiffness remain poorly understood. We have proposed a new model for the organization of pericentric DNA and cohesin in the centromere (Bloom et al., 2006). The key feature of the model is that the kinetochore promotes the organization of pericentric chromatin into a cruciform in mitosis such that centromere-flanking DNA is held together via intramolecular cohesion, while chromosome arms are paired inter-molecularly. The model provides a solution to the major paradoxes in the field and reconciles the organization of centromere DNA with the distribution of cohesin. Our experimental approaches combine model convolution microscopy, single chromosome tracking in living cells, and high resolution colocalization of kinetochore proteins. We have chosen budding yeast S. cerevisiae to characterize the force producing mechanisms and tension elements that reside at the interface of kinetochore-MT attachments. Only one microtubule (MT) attachment per kinetochore and the ability to engineer designer chromosomes for single-molecule studies makes budding yeast an ideal system. Our studies will test the hypothesis that the fundamental unit of segregation conserved throughout phylogeny is the budding yeast attachment site (kinetochore) that links the chromosome via synapsed pericentric chromatin to the microtubule.
描述(由申请人提供):重复染色体的准确分离确保子细胞获得每条染色体的一个且仅一个拷贝。染色体分离的错误导致非整倍体,并对人类健康造成严重后果。不正确的染色体数目和染色体不稳定性是肿瘤细胞的标志。因此,分离错误被认为是肿瘤发生的主要原因(Jallepalli和Lengauer,2001; Yuen等人,2005年)。研究染色体分离的机制对于理解可能导致错误的过程至关重要。近年来,在鉴定染色体运动和分离所必需的蛋白质方面取得了巨大进展,但对关键力产生组分的机制和结构以及着丝粒刚度的分子基础仍然知之甚少。我们已经提出了一个新的模型,用于着丝粒中着丝粒周围DNA和粘着蛋白的组织(Bloom et al.,2006年)。该模型的关键特征是着丝粒促进有丝分裂中臂间染色质组织成十字形,使得着丝粒侧翼DNA通过分子内凝聚力保持在一起,而染色体臂在分子间配对。该模型提供了一个解决方案,在该领域的主要矛盾,并调和着丝粒DNA的组织与粘着蛋白的分布。我们的实验方法结合了联合收割机模型卷积显微镜,活细胞中的单染色体跟踪和动粒蛋白的高分辨率共定位。我们选择了芽殖酵母S。cerevisiae来表征存在于kinetochore-MT附件的界面处的力产生机制和张力元件。每个着丝粒只有一个微管(MT)附着,并且能够设计用于单分子研究的设计染色体,这使得芽殖酵母成为理想的系统。我们的研究将检验这样的假设:在整个系统发育中保守的分离的基本单位是芽殖酵母附着位点(动粒),它通过突触臂周染色质将染色体连接到微管。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kerry S Bloom其他文献
Kerry S Bloom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kerry S Bloom', 18)}}的其他基金
2009 Motile and Contractile Systems Gordon Research Conference
2009 年运动和收缩系统戈登研究会议
- 批准号:
8101048 - 财政年份:2009
- 资助金额:
$ 3万 - 项目类别:
2009 Motile and Contractile Systems Gordon Research Conference
2009 年运动和收缩系统戈登研究会议
- 批准号:
7881697 - 财政年份:2009
- 资助金额:
$ 3万 - 项目类别:
2009 Motile and Contractile Systems Gordon Research Conference
2009 年运动和收缩系统戈登研究会议
- 批准号:
8300855 - 财政年份:2009
- 资助金额:
$ 3万 - 项目类别:
2009 Motile and Contractile Systems Gordon Research Conference
2009 年运动和收缩系统戈登研究会议
- 批准号:
8545866 - 财政年份:2009
- 资助金额:
$ 3万 - 项目类别:
2009 Motile and Contractile Systems Gordon Research Conference
2009 年运动和收缩系统戈登研究会议
- 批准号:
7667081 - 财政年份:2009
- 资助金额:
$ 3万 - 项目类别:
相似海外基金
Defining how cells relay mechanical signals to changes in cell architecture
定义细胞如何将机械信号传递给细胞结构的变化
- 批准号:
DP240103259 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Discovery Projects
Architecture and interactions of Granzyme K+ CD8 T cells in inflamed synovium in rheumatoid arthritis
类风湿关节炎炎症滑膜中颗粒酶 K CD8 T 细胞的结构和相互作用
- 批准号:
10916825 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Conference: 2023 Neuroethology: Behavior, Evolution and Neurobiology GRC Linking Diversity in Cells, Circuits, and Brain Architecture to Ecologically Relevant Behaviors
会议:2023 年神经行为学:行为、进化和神经生物学 GRC 将细胞、回路和大脑结构的多样性与生态相关行为联系起来
- 批准号:
2334509 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Elucidation of early bone tissue architecture by in vivo volumetric image analysis-from both sides of cells and bone matrix
通过体内体积图像分析从细胞和骨基质两侧阐明早期骨组织结构
- 批准号:
23H03114 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
3-Dimensional genomic architecture in innate lymphoid cells and allergic inflammation
先天淋巴细胞和过敏性炎症的三维基因组结构
- 批准号:
10417585 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Features of the early adenoma and adjacent colon that drive progression: the role of mutation burden in normal tissue, senescent cells, and tumor clonal architecture
驱动进展的早期腺瘤和邻近结肠的特征:突变负荷在正常组织、衰老细胞和肿瘤克隆结构中的作用
- 批准号:
10707105 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Elucidation of 3D genome architecture of human placental and endometrial cells
阐明人类胎盘和子宫内膜细胞的 3D 基因组结构
- 批准号:
22H03231 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
BBSRC-NSF/BIO - Deciphering the rules of nucleus architecture with synthetic cells and organelles
BBSRC-NSF/BIO - 用合成细胞和细胞器破译细胞核结构的规则
- 批准号:
BB/W00125X/1 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Research Grant
Architecture and interactions of Granzyme K+ CD8 T cells in inflamed synovium in rheumatoid arthritis
类风湿关节炎炎症滑膜中颗粒酶 K CD8 T 细胞的结构和相互作用
- 批准号:
10506508 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Features of the early adenoma and adjacent colon that drive progression: the role of mutation burden in normal tissue, senescent cells, and tumor clonal architecture
驱动进展的早期腺瘤和邻近结肠的特征:突变负荷在正常组织、衰老细胞和肿瘤克隆结构中的作用
- 批准号:
10519075 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别: