Profiling the Functional Genetics of Health and Disease using BrainGENIE: The Brain Gene Expression and Network Imputation Engine
使用 BrainGENIE 分析健康和疾病的功能遗传学:大脑基因表达和网络插补引擎
基本信息
- 批准号:10435527
- 负责人:
- 金额:$ 20.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-21 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlzheimer&aposs DiseaseAttentionAutopsyBayesian ModelingBiologicalBipolar DisorderBloodBlood specimenBrainBrain DiseasesBrain regionCollectionComplexComputer softwareComputing MethodologiesDataData SetDiagnosticDiseaseEtiologyFosteringFunctional disorderGene ExpressionGene Expression ProfileGenesGeneticGenomicsGenotypeGenotype-Tissue Expression ProjectGoalsGoldHealthHeritabilityHumanIndividualInterventionKnowledgeLightMajor Depressive DisorderMapsMental disordersMethodsModelingMolecularNatural ImmunityNeural Network SimulationNeurodegenerative DisordersParkinson DiseaseParticipantPathway interactionsPatternPersonsPost-Traumatic Stress DisordersQuantitative Trait LociRegression AnalysisResearch PersonnelSamplingSchizophreniaSource CodeStatistical MethodsSurrogate MarkersTestingTissuesTrainingValidationVariantWorkautism spectrum disorderbasebrain tissuecell typechromatin remodelingdeep learningdeep neural networkgene discoverygene networkgenome wide association studyhuman subjectimprovedmild cognitive impairmentneural networkneurodevelopmentneuropsychiatric disorderneurotransmissionnovelperipheral bloodpublic repositorytooltraittranscriptometranscriptomics
项目摘要
Abstract
The pathophysiology of brain disorders remains unknown because we cannot study the relevant tissue in living
human subjects. Postmortem brain tissue is useful, but expensive, rare, and critically confounded by
antemortem and agonal factors. These two facts have inspired the search for alternative strategies, such as
the use of surrogate markers like blood-based gene expression. To improve the rigor of this widely used
approach, we developed a novel computational method called the Brain Gene Expression and Network
Imputation Engine (BrainGENIE) that leverages biological comparability between blood and brain gene
expression to predict transcriptome profiles for brain tissue based on blood gene-expression profiles.
BrainGENIE is fundamentally different from other transcriptome-imputation methods, and captures a much
larger proportion of the variance in—and larger fraction of—the brain transcriptome. BrainGENIE is capable of
predicting approximately 9–57% of the brain transcriptome, which yields an approximate 1.8-fold increase in
coverage relative to the “gold standard” method PrediXcan, and which greatly improves our statistical power to
detect genes and pathways associated with disease. Our proposal contains three Specific Aims to improve our
method and shed light on biological pathways underlying neuropsychiatric disorders. Aim 1: Refine
BrainGENIE to capture additional genes that are not currently well predicted by our method. Aim 2: Apply
BrainGENIE to our collection of publicly available and in-house data to predict brain-region-specific gene
expression profiles for over 8,000 living persons, and discover region-specific gene-expression patterns
associated with neuropsychiatric disorders and neurodegenerative diseases. Aim 3: Disseminate BrainGENIE
as stand-alone software for other researchers to use freely. Guided by recent genetic and genomic studies, we
hypothesize that comparable patterns of gene dysregulation will be found across neuropsychiatric disorders
among pathways involving innate immunity, chromatin remodeling, neurodevelopment, and neurotransmission.
Inclusion of neurodegenerative disorders in our analysis will allow us to determine whether gene expression
patterns are shared across a broader range of brain disorders. We also expect to identify disorder-specific and
brain-region-specific transcriptomic associations. Our project will enable new lines of inquiry into biological
changes that emerge in the brains of living persons, and create opportunities to improve diagnostics,
intervention, and treatment.
摘要
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A polygenic resilience score moderates the genetic risk for schizophrenia: Replication in 18,090 cases and 28,114 controls from the Psychiatric Genomics Consortium.
多基因复原力评分可减轻精神分裂症的遗传风险:在精神病学基因组学联盟的 18,090 例病例和 28,114 例对照中进行复制。
- DOI:10.1002/ajmg.b.32957
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Hess,JonathanL;Mattheisen,Manuel;SchizophreniaWorkingGroupofthePsychiatricGenomicsConsortium;Greenwood,TiffanyA;Tsuang,MingT;Edenberg,HowardJ;Holmans,Peter;Faraone,StephenV;Glatt,StephenJ
- 通讯作者:Glatt,StephenJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen J Glatt其他文献
Stephen J Glatt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen J Glatt', 18)}}的其他基金
Genetic Predictors, Transcriptomic Biomarkers, & Neurobiological Signatures of Resilience to Alzheimer's Disease
遗传预测因子、转录组生物标志物、
- 批准号:
10017121 - 财政年份:2019
- 资助金额:
$ 20.25万 - 项目类别:
Genetic Predictors, Transcriptomic Biomarkers, & Neurobiological Signatures of Resilience to Alzheimer's Disease
遗传预测因子、转录组生物标志物、
- 批准号:
10212961 - 财政年份:2019
- 资助金额:
$ 20.25万 - 项目类别:
Genetic Predictors, Transcriptomic Biomarkers, & Neurobiological Signatures of Resilience to Alzheimer's Disease
遗传预测因子、转录组生物标志物、
- 批准号:
10456718 - 财政年份:2019
- 资助金额:
$ 20.25万 - 项目类别:
2/2-Expanding Rapid Ascertainment Networks Of Schizophrenia Families In Taiwan
2/2-扩大台湾精神分裂症家族快速查明网络
- 批准号:
8303451 - 财政年份:2008
- 资助金额:
$ 20.25万 - 项目类别:
2/2-Expanding Rapid Ascertainment Networks Of Schizophrenia Families In Taiwan
2/2-扩大台湾精神分裂症家族快速查明网络
- 批准号:
7694270 - 财政年份:2008
- 资助金额:
$ 20.25万 - 项目类别:
2/2-Expanding Rapid Ascertainment Networks Of Schizophrenia Families In Taiwan
2/2-扩大台湾精神分裂症家族快速查明网络
- 批准号:
7881404 - 财政年份:2008
- 资助金额:
$ 20.25万 - 项目类别:
2/2-Expanding Rapid Ascertainment Networks Of Schizophrenia Families In Taiwan
2/2-扩大台湾精神分裂症家族快速查明网络
- 批准号:
8073036 - 财政年份:2008
- 资助金额:
$ 20.25万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 20.25万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 20.25万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 20.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




